cho tam giác ABC có AB < BC. Trên tia BA lấy điểm D sao cho BD = BC. Tia phân giác B cắt AC vad DC lần lượt tại E và I.
a) chứng ming rằng tam giác BEC = tam giác BED
b) chứng minh ID = IC
c) từ A kẻ AH vuông góc với DC tại H. chứng minh AH song song với BI
a: Xét ΔBDE và ΔBCE có
BD=BC
\(\widehat{DBE}=\widehat{CBE}\)
BE chung
Do đó: ΔBDE=ΔBCE
b: Ta có: ΔBDC cân tại B
mà BI là đường phân giác
nên I là trung điểm của CD
=>IC=ID
c: ta có: ΔBDC cân tại B
mà BI là đường phân giác
nên BI\(\perp\)DC
Ta có: BI\(\perp\)DC
AH\(\perp\)DC
Do đó: BI//AH
ảm ơn nho ^-^