K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2023

\(a^3+b^3+c^3=3bac\)

=>\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

=>\(\left[\left(a+b\right)^3+c^3\right]-3ba\left(a+b+c\right)=0\)

=>\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

=>\(a^2+b^2+c^2-ab-ac-bc=0\)

=>\(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

=>a=b=c

11 tháng 12 2023

\(a^3+b^3+c^3=3abc\\\Rightarrow a^3+b^3+c^3-3abc=0\\\Rightarrow(a+b)^3+c^3-3ab(a+b)-3abc=0\\\Rightarrow (a+b+c)^3-3(a+b)c(a+b+c)-3ab(a+b+c)=0\\\Rightarrow(a+b+c)[(a+b+c)^2-3(a+b)c-3ab]=0\\\Rightarrow(a+b+c)(a^2+b^2+c^2+2ab+2bc+2ca-3ac-3bc-3ab)=0\\\Rightarrow(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0\\\Rightarrow a^2+b^2+c^2-ab-bc-ca=0(vì.a+b+c\ne0)\\\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\\\Rightarrow(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0\\\Rightarrow(a-b)^2+(b-c)^2+(c-a)^2=0\)

Ta thấy: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{matrix}\right.\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

nên: \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Rightarrow a=b=c\)

Vậy: ...

\(---\)

Các HĐT được sử dụng trong bài:

\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca\)

$\text{#}Toru$

11 tháng 12 2023

loading...

5 tháng 11 2016

Ta có : \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-c\right)\)

Do : \(a^3+b^3+c^3=3abc\)\(a+b+c\ne0\) nên \(a^2+b^2+c^2-ab-bc-ac=0\)

Dễ dàng suy ra \(a=b=c\).Vậy \(N=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}.\)

10 tháng 2 2018

Mẫu của N phải là (a+b+c)^2013 chứ bạn

Đk để phân số tồn tại là : a+b+c khác 0

a^3+b^3+c^3=abc

<=> a^3+b^3+c^3-3abc = 0

<=> (a+b+c).(a^2+b^2+c^2-ab-bc-ca) = 0

<=> a^2+b^2+c^2-ab-bc-ca = 0 ( vì a+b+c khác 0 )

<=> 2a^2+2b^2+2c^2-2ab-2bc-2ca = 0

<=> (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2) = 0

<=> (a-b)^2+(b-c)^2+(c-a)^2 = 0

<=> a-b=0 ; b-c=0 ; c-a=0

<=> a=b=c

Khi đó : N = 3a^2013/(3a)^2013 = 3/3^2013 = 1/3^2012

Tk mk nha

12 tháng 3 2017

A=1/2 nhé , lấy ví dụ ra là được 

12 tháng 3 2017

từ pt trên bạn pt đa thức thành nhân tử được (a+b+c)(a^2-ab+b^2-ac-bc+c^2)=0 

mà a+b+c khác 0 nên a^2-ab+b^2-ac-bc+c^2=0

2(a^2-ab+b^2-ac-bc+c^2)=0

(a-b)^2+(a-c)^2+(b-c)^2=0

suy ra a=b=c 

suy ra A=1/3 

5 tháng 12 2019

Ta có :

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Mà \(a+b+c\ne0\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

15 tháng 9 2023

1) \(\left\{{}\begin{matrix}a^3+b^3+c^3=3abc\\a+b+c\ne0\end{matrix}\right.\)  \(\left(a;b;c\in R\right)\)

Ta có :

\(a^3+b^3+c^3\ge3abc\) (Bất đẳng thức Cauchy)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\left(a^3+b^3+c^3=3abc\right)\)

Thay \(a=b=c\) vào \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\) ta được

\(\Leftrightarrow P=\dfrac{6a^2}{6a^2}=1\)

15 tháng 9 2023

\(3^x=y^2+2y\left(x;y>0\right)\)

\(\Leftrightarrow3^x+1=y^2+2y+1\)

\(\Leftrightarrow3^x+1=\left(y+1\right)^2\left(1\right)\)

- Với \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(pt\left(1\right)\Leftrightarrow3^0+1=\left(0+1\right)^2\Leftrightarrow2=1\left(vô.lý\right)\)

- Với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)  

\(pt\left(1\right)\Leftrightarrow3^1+1=\left(1+1\right)^2=4\left(luôn.luôn.đúng\right)\)

- Với \(x>1;y>1\)

\(\left(y+1\right)^2\) là 1 số chính phương

\(3^x+1=\overline{.....1}+1=\overline{.....2}\) không phải là số chính phương

\(\Rightarrow\left(1\right)\) không thỏa với \(x>1;y>1\)

Vậy với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) thỏa mãn đề bài

5 tháng 12 2017

Ta có:\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc=0\)

\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(loai\right)\\a=b=c\end{cases}}\)

\(\Rightarrow P=2007.2007.2007=2007^3\)

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\) (vì \(a+b+c\ne0\))

<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\) (nhân cả hai về với hai)

<=> \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=> a - b = b - c = c - a = 0 (vì 3 cái đấy đều lớn hơn hoặc bằng 0)

<=> a = b = c 

Nên : P = \(\left(2017+\frac{a}{b}\right)\left(2017+\frac{b}{c}\right)\left(2017+\frac{c}{a}\right)=\left(2017+\frac{a}{a}\right)\left(2017+\frac{a}{a}\right)+\left(2017+\frac{a}{a}\right)\)

            \(=\left(2017+1\right)\left(2017+1\right)\left(2017+1\right)=2018.2018.2018=2018^3\)

10 tháng 2 2018

\(a^3+b^3+c^3=3abc\\ \Rightarrow a^3+b^3+c^3-3abc=0\\ \Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\\ \Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2=ab+bc+ac\left(a+b+c\ne0\right)\\ \Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\\ \Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\\ \Rightarrow a=b=c\\ \Rightarrow B=\dfrac{2}{a}.\dfrac{2}{b}.\dfrac{2}{c}=\dfrac{8}{abc}\)