Biết với \(a,b>0;a,b\in R\)
Thì \(a>b\Leftrightarrow\sqrt{a}>\sqrt{b}\)
\(a>b\Leftrightarrow a^2>b^2\)
Hãy so sánh
a) \(3\sqrt{2}\)và \(2\sqrt{3}\)
b) \(7\sqrt{6}\)và \(6\sqrt{7}\)
Giúp mik nha____mik cần gấp lắm-------ai nhanh mik tick cho ha >~<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A\left(x\right)=ax^2+bx+c\)
Thay \(A\left(-1\right)\) ta được:
\(A\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=a+c-b\)
\(=b-8-b=-8\)
b) \(\left\{{}\begin{matrix}A\left(0\right)=4\\A\left(1\right)=9\\A\left(2\right)=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b+c=9\\4a+2b+c=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=5\\4a+2b=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=5\\2a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a=0\\b=5\end{matrix}\right.\)
c)
Ta có: \(\left\{{}\begin{matrix}A\left(2\right)=4a+2b+c\\A\left(-1\right)=a-b+c\end{matrix}\right.\)
\(\Leftrightarrow A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)
\(\Leftrightarrow A\left(2\right)=-A\left(-1\right)\)
\(\Leftrightarrow A\left(2\right)\times A\left(-1\right)=-\left[A\left(2\right)\right]^2\le0\)
theo đề
a/bc < 0 (a,b ∈ Q; a,b,c ≠ 0)
=> a và bc trái dấu ( vì a/bc < 0 nên phân số này có a là 1 số âm; b là 1 số dương).
=> a(bc) < 0
=> (ac)b < 0
=> ac và b trái dấu
=> a/bc < 0 (đpcm)
cho đa thức Q(x)=ax^2+bx+c
a) biết 5a+b+2c =0 chứng minh rằng Q(2)
b)biết Q(x)=0 với mọi x CM a=b=c=0
a)có f(-1)=a-b+c
f(2)=4a+2b+c
=>f(-1)+ f(2)=5a+b+2c=0
=>-f(-1)=f(2)
=>f(-1).f(2)=f(-1).-f(-1)=-(f(x))2\(\le\)0
a) Ta có: \(3\sqrt{2}=\sqrt{3^2.2}=\)\(\sqrt{18}\)
\(2\sqrt{3}=\sqrt{2^2.3}=\sqrt{12}\)
Do \(\sqrt{18}>\sqrt{12}=>3\sqrt{2}>2\sqrt{3}\)
b) tương tự trên
bạn thử bình phương 2 vế lên rùi so sánh
so sánh song thì kết luận