giúp em với, em cần gặp ạ. Cảm ơn nhiều ạ!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1.
Khi mở khóa K:
\(I_m=I_1=0,4A\)
Khi đóng khóa K:
\(I_m=I_1+I_2=0,6\Rightarrow I_2=0,2A\)
\(U_1=0,4\cdot5=2V\)
\(\Rightarrow U_2=U_1=2V\)
\(\Rightarrow U=U_1=U_2=2V\)
\(R_2=\dfrac{U_2}{I_2}=\dfrac{2}{0,2}=10\Omega\)
a: Hàm số nghịch biến trên R
b: \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2-4x_1+5-x_2^2+4x_2-5}{x_1-x_2}\)
\(=x_1+x_2-4\)
Trường hợp 1: x<=2
\(\Leftrightarrow x_1+x_2-4< =0\)
Vậy: Hàm số nghịch biến khi x<=2
Câu II:
a: \(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{4\sqrt{x}}{x-1}\right):\left(\dfrac{x+\sqrt{x}+5}{x-1}-\dfrac{1}{\sqrt{x}-1}\right)\)
\(=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+5-\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+4}\)
\(=\dfrac{8\sqrt{x}}{x+4}\)
Câu IV
3: xy-x-y=2
=>xy-x-y+1=3
=>x(y-1)-(y-1)=3
=>(x-1)(y-1)=3
=>\(\left(x-1\right)\cdot\left(y-1\right)=1\cdot3=3\cdot1=\left(-1\right)\cdot\left(-3\right)=\left(-3\right)\cdot\left(-1\right)\)
=>\(\left(x-1;y-1\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;4\right);\left(4;2\right);\left(0;-2\right);\left(-2;0\right)\right\}\)
2:
Khoảng cách từ O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-4\right)+0\cdot\left(m-3\right)-1\right|}{\sqrt{\left(m-4\right)^2+\left(m-3\right)^2}}\)
\(=\dfrac{1}{\sqrt{2m^2-14m+25}}\)
Để d(O;(d)) lớn nhất thì \(2m^2-14m+25\) nhỏ nhất
\(2m^2-14m+25\)=\(2\left(m^2-7m+12,5\right)\)
\(=2\left(m^2-2\cdot m\cdot\dfrac{7}{2}+\dfrac{49}{4}+\dfrac{1}{4}\right)\)
\(=2\left(m-\dfrac{7}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}\)
Dấu '=' xảy ra khi m=7/2
Vậy: m=7/2