Tìm số nguyên x biết:
(x+3) (x2 +4) >0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-1\right)\left(x^3+8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x^3+8=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x^3=-8\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Ta có các trường hợp sau:
+TH1: \(\left\{{}\begin{matrix}x+3>0\\x-2< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x< 2\end{matrix}\right.\)\(\Leftrightarrow-3< x< 2\)
+TH2: \(\left\{{}\begin{matrix}x+3< 0\\x-2>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< -3\\x>2\end{matrix}\right.\) (vô lý)
Vậy -3<x<2
Lời giải:
a. $22-(-x)=12$
$22+x=12$
$x=12-22=-10$
b. $x(x+2)=0$
$\Rightarrow x=0$ hoặc $x+2=0$
$\Rightarrow x=0$ hoặc $x=-2$
c. $(x+1)(x+9)=0$
$\Rightarrow x+1=0$ hoặc $x+9=0$
$\Rightarrow x=-1$ hoặc $x=-9$
d.
$x^2+3x=0$
$\Rightarrow x(x+3)=0$
$\Rightarrow x=0$ hoặc $x+3=0$
$\Rightarrow x=0$ hoặc $x=-3$
a) 22 - (-x) = 12
x = 12 - 22
x = -10
b) x.(x + 2) = 0
x = 0 hoặc x + 2 = 0
*) x + 2 = 0
x = 0 - 2
x = -2
Vậy x = -2; x = 0
c) (x + 1)(x + 9) = 0
x + 1 = 0 hoặc x + 9 = 0
*) x + 1 =.0
x = 0 - 1
x = -1
*) x + 9 = 0
x = 0 - 9
x = -9
Vậy x = -9; x = -1
d) x² + 3x = 0
x(x + 3) = 0
x = 0 hoặc x + 3 = 0
*) x + 3 = 0
x = 0 - 3
x = -3
Vậy x = -3; x = 0
a) (x - 2).3⁵ = 3⁷
x - 2 = 3⁷ : 3⁵
x - 2 = 3²
x - 2 = 9
x = 9 + 2
x = 11
b) x² - 2x = 0
x(x - 2) = 0
⇒ x = 0 hoặc x - 2 = 0
*) x - 2 = 0
x = 2
Vậy x = 0; x = 2
c) (2x - 1)² = 49
⇒ 2x - 1 = 7 hoặc 2x - 1 = -7
*) 2x - 1 = 7
2x = 7 + 1
2x = 8
x = 8 : 2
x = 4
*) 2x - 1 = -7
2x = -7 + 1
2x = -6
x = -6 : 2
x = -3
Vậy x = -3; x = 4
2/
a, |a+3|=7
Chia làm 2 trường hợp
TH1: TH2:
a+3=7 a+3=-7
a=7-3 a=-7-3
a=4 a=-11
b,|a-5|=(-5)+8
|a-5|=3
Chia làm 2 truờng hợp
TH1: TH2:
a-5=3 a-5=-3
a=3+5 a=-3+5
a=8 a=2
1/
a, Cộng 2 vế với y ta được :
x-y+y > 0+y
=> x > y
b, Trừ 2 vê với y ta được :
x-y > y-y
=> x-y >0
2/
a, => a+3=-7 hoặc a+3=7
=> a=-10 hoặc a=4
b, => |a-5| = 3
=> a-5=-3 hoặc a-5=3
=> a=2 hoặc a=8
Tk mk nha
x-1)(x-2)=0
⇒\(\left\{{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vì \(x^2\ge0\forall x\in Z\)
\(\Rightarrow x^2+4>0\forall x\in Z\)
Suy ra để \(\left(x+3\right)\left(x^2+4\right)>0\) thì \(x+3>0\Leftrightarrow x>-3\)
Vậy \(x>-3\)