cho tam giác ABC vuông tại A. AM là chung chứng minh AM= 1/2 BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia MA lấy D s/c MA=MD từ đó chứng minh được:
\(\text{△AMB=△DMC(c.g.c)}\) \(\text{⇒}\) \(\widehat{ABM}=\widehat{DCM}\) \(mà\) \(\widehat{ABM}+\widehat{ACM}=90^O\text{ }\text{⇒}\widehat{ACD}=90^O\)
⇒ \(\text{△}ABC=\text{△}CDA\left(c.g.c\right)\) ⇒ BC=AD ⇒ \(\dfrac{1}{2}BC=\dfrac{1}{2}AD\text{⇒ }\dfrac{1}{2}BC=AM\)
(Bạn tự vẽ hình)
Trong tam giác vuông đường trung tuyến ứng với cạnh huyền = 1/2 cạnh huyền
=> đpcm
a) Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC(M là trung điểm của BC)
\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)
Do đó: ΔBEM=ΔCFM(cạnh huyền-góc nhọn)
b) Ta có: ΔBEM=ΔCFM(cmt)
nên BE=CF(hai cạnh tương ứng)
c) Xét ΔBMF và ΔCME có
MB=MC(M là trung điểm của BC)
\(\widehat{BMF}=\widehat{CME}\)(hai góc đối đỉnh)
MF=ME(ΔCFM=ΔBEM)
Do đó: ΔBMF=ΔCME(c-g-c)
⇒\(\widehat{BFM}=\widehat{CEM}\)(hai góc tương ứng)
mà \(\widehat{BFM}\) và \(\widehat{CEM}\) là hai góc ở vị trí so le trong
nên BF//CE(Dấu hiệu nhận biết hai đường thẳng song song)
\(AM=\frac{BC}{2}\Rightarrow AM=BM=CM\)
=> tg ABM cân tại M \(\Rightarrow\widehat{ABC}=\widehat{BAM}\)
Và tg ACM cân tại M \(\Rightarrow\widehat{ACB}=\widehat{CAM}\)
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=\widehat{BAM}+\widehat{CAM}=\widehat{BAC}\)
Mà \(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BAC}=\widehat{BAC}\Rightarrow\widehat{BAC}=90^o\)
=> tg ABC vuông tại A
Tam giác ABC có M là trung điểm của BC
Trên tia đối của tia MA lấy điểm N sao cho MN = MA
Ta có :
góc AMB = góc NMC ( đối đỉnh )
BM = CM ( gt )
MA = MN ( dựng hình )
Suy ra tam giác MAB = tam giác MNC ( c - g - c )
Suy ra NC = AB và góc MBA = góc MCN
Vì góc MBA = góc MCN nên AB // NC
Suy ra góc BAC + góc ACN = 180 độ
Ta có góc BAC = 90 độ nên góc ACN = 90 độ
Suy ra tam giác ABc = tam giác CNA ( c - g - c ) Vì AC cạnh chung
AB = NC ( cmt ) và góc BAC = góc ACN = 90 độ
Suy ra AN = BC
Suy ra AM = \(\frac{1}{2}\)BC ( đpcm )
Hình tự vẽ nhá