K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

 

 = \

  = \

Cho  +  = \frac{1}{a+b} ;  . CMR
a)  
b)  +  = 

Cho  +  = \frac{1}{a+b} ;  . CMR

a)  

b)  +  =  

lưu ý chép kĩ nhé nguyenchieubao

 ai k cho mk thì mk cho lại

22 tháng 8 2017

Ta có: x2 – x – 12 = x2 – x – 16 + 4

= (x2 – 16) – (x – 4)

= (x – 4).(x + 4) – (x – 4)

= (x – 4).(x + 4 – 1)

= (x – 4).(x + 3)

NV
15 tháng 7 2020

a/ \(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+y^2-2xy\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b/ \(\frac{a}{a+b^2}=\frac{a}{a\left(a+b+c\right)+b^2}=\frac{a}{a^2+b^2+a\left(b+c\right)}\le\frac{a}{2ab+a\left(b+c\right)}=\frac{1}{b+b+b+c}\)

\(\Rightarrow\frac{a}{a+b^2}=\frac{1}{b+b+b+c}\le\frac{1}{16}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{16}\left(\frac{3}{b}+\frac{1}{c}\right)\)

Tương tự: \(\frac{b}{b+c^2}\le\frac{1}{16}\left(\frac{3}{c}+\frac{1}{a}\right)\) ; \(\frac{c}{c+a^2}\le\frac{1}{16}\left(\frac{3}{a}+\frac{1}{c}\right)\)

Cộng vế với vế:

\(VT\le\frac{1}{16}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

13 tháng 2 2020

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Tương tự:\(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c};\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)

Cộng theo vế 3 BĐT trên rồi chia cho 2 ta thu được đpcm

Đẳng thức xảy ra khi \(a=b=c\)

b)Đặt \(a+b=x;b+c=y;c+a=z\). Cần chứng minh:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

Cách làm tương tự câu a.

c) \(VT=\Sigma_{cyc}\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\Sigma_{cyc}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\le\frac{1}{16}\Sigma\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

Đẳng thức xảy ra khi \(a=b=c=\frac{3}{4}\)

d) Em làm biếng quá anh làm nốt đi:P

13 tháng 2 2020

lm phần d đi a k bt lm

13 tháng 5 2021

a)Áp dụng BĐT cosi-schwart:
`A=1/a+1/b+1/c>=9/(a+b+c)`
Mà `a+b+c<=3/2`
`=>A>=9:3/2=6`
Dấu "=" `<=>a=b=c=1/2`
b)Áp dụng BĐT cosi:
`a+1/(4a)>=1`
`b+1/(4b)>=1`
`c+1/(4c)>=1`
`=>a+b+c+1/(4a)+1/(4b)+1/(4c)>=3`
Ta có:
`1/a+1/b+1/c>=6`(Ở câu a)
`=>3/4(1/a+1/b+1/c)>=9/2`
`=>a+b+c+1/(a)+1/(b)+1/(c)>=3+9/2=15/2`
Dấu "=" `<=>a=b=c=1/2`

a)Áp dụng BĐT cosi-schwart:
A=1a+1b+1c≥9a+b+cA=1a+1b+1c≥9a+b+c
Mà a+b+c≤32a+b+c≤32
⇒A≥9:32=6⇒A≥9:32=6
Dấu "=" ⇔a=b=c=12⇔a=b=c=12
b)Áp dụng BĐT cosi:
a+14a≥1a+14a≥1
b+14b≥1b+14b≥1
c+14c≥1c+14c≥1
⇒a+b+c+14a+14b+14c≥3⇒a+b+c+14a+14b+14c≥3
Ta có:
1a+1b+1c≥61a+1b+1c≥6(Ở câu a)
⇒34(1a+1b+1c)≥92⇒34(1a+1b+1c)≥92
⇒a+b+c+1a+1b+1c≥3+92=152⇒a+b+c+1a+1b+1c≥3+92=152
Dấu "=" ⇔a=b=c=12

 

NV
6 tháng 5 2021

Ta chứng minh BĐT sau với các số dương:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)

Cộng vế với vế:

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

NV
6 tháng 5 2021

b.

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)

Cộng vế với vế (1); (2) và (3):

\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

NV
16 tháng 11 2019

a/ Đề sai, đề đúng phải là \(p=\frac{a+b+c}{2}\)

b/ \(\Leftrightarrow\frac{2}{2+a^2b}+\frac{2}{2+b^2c}+\frac{2}{2+c^2a}\ge2\)

\(VT=1-\frac{a^2b}{1+1+a^2b}+1-\frac{b^2c}{1+1+b^2c}+1-\frac{c^2a}{1+1+c^2a}\)

\(VT\ge3-\left(\frac{a^2b}{3\sqrt[3]{a^2b}}+\frac{b^2c}{3\sqrt[3]{b^2c}}+\frac{c^2a}{3\sqrt[3]{c^2a}}\right)\)

\(VT\ge3-\frac{1}{9}\left(3\sqrt[3]{a^2.ab.ab}+3\sqrt[3]{b^2.bc.bc}+3\sqrt[3]{c^2.ca.ca}\right)\)

\(VT\ge3-\frac{1}{9}\left(a^2+2ab+b^2+2bc+c^2+2ca\right)\)

\(VT\ge3-\frac{1}{9}\left(a+b+c\right)^2=2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

26 tháng 11 2020

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c