tìm x,y,z biết 2x=3y,4y=3z và x-y+2z=57
(trả lời nhanh câu này giúp mik plssss)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x=3y
=>\(\dfrac{x}{3}=\dfrac{y}{2}\)
=>\(\dfrac{x}{9}=\dfrac{y}{6}\)
4y=3z
=>\(\dfrac{y}{3}=\dfrac{z}{4}\)
=>\(\dfrac{y}{6}=\dfrac{z}{8}\)
=>\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}\)
mà x-y+2z=57
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}=\dfrac{x-y+2z}{9-6+2\cdot8}=\dfrac{57}{19}=3\)
=>x=27; y=18; z=24
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
Ta có : \(\left\{{}\begin{matrix}2x=3y\\4y=3z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{9}=\dfrac{y}{6}\\\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{6}=\dfrac{z}{8}\end{matrix}\right.\)
`=> x/9 =y/6 =z/8=>x/9 =y/6 = (2z)/16` và `x-y+2z=57`
ADTC dãy tỉ số bằng nhau ta có :
`x/9 =y/6 = (2z)/16 = (x-y+2z)/(9-6+16) = 57/19=3`
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=3\Rightarrow x=3\cdot9=27\\\dfrac{y}{6}=3\Rightarrow y=3\cdot6=18\\\dfrac{z}{8}=3\Rightarrow z=3\cdot8=24\end{matrix}\right.\)
`