Cho A = \(\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\) ( có 100 dấu căn.
Cmr A không phải số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(\sqrt{2+\sqrt{2}+\sqrt{2}+....+\sqrt{2}}>\sqrt{1}=1\)
lại có: \(\sqrt{2+\sqrt{2}+\sqrt{2}+....+\sqrt{2}}< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}=\sqrt{2+\sqrt{2+\sqrt{2+...+2}}=2}\)\(\Rightarrow1< \sqrt{2+\sqrt{2+\sqrt{2+....+\sqrt{2}}}}< 2\)
\(\Rightarrow\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\) ko phải là STN
Nhìn vào bài dễ thấy, \(A>1\)hay ta chứng minh \(A< 2\)
Vậy: \(\sqrt{2+\sqrt{2}}< \sqrt{2+2}=\sqrt{4}=2\)
\(\sqrt{2+\sqrt{2+\sqrt{2}}}< \sqrt{2+2}=\sqrt{4}=2\)
Nên:
\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}< \sqrt{2+2}=\sqrt{4}=2\)
\(\Rightarrow1< A< 2\)hay \(A\neℕ\left(đpcm\right)\)
Ta có: A < \(\sqrt{2+\sqrt{2+...+\sqrt{3}}}\) < \(\sqrt{3}\)
Lại có: A > \(\sqrt{2}\)
=> \(\sqrt{2}< A< \sqrt{3}\) => A ko phải số tự nhiên
đang cộng tất cả căn 2 sao tự nhiên lại cộng căn 3 vào làm gì bạn ơi
Xét tử :
\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{56+\sqrt{56+\sqrt{56+...+\sqrt{64}}}}\)
\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{56+\sqrt{56+\sqrt{56+...+8}}}\)
\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{64}=3-8=-5\) ( bước này tự hiểu nhé )
Xét mẫu :
\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}\)
\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{2+\sqrt{2+\sqrt{2+...+2}}}\)
\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{4}=6-2=4\) ( bước này cũng tự hiểu -,- )
\(\Rightarrow\)\(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}>\frac{-5}{4}>-1\) \(\left(1\right)\)
(Xét 1 lần nữa -,- )
Xét tử :
\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}\)
\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{2+\sqrt{2+\sqrt{2+...+2}}}\)
\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{4}=3-2=1\)
Xét mẫu :
\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{56+\sqrt{56+\sqrt{56+...+\sqrt{64}}}}\)
\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{56+\sqrt{56+\sqrt{56+...+8}}}\)
\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{64}=6-8=-2\)
\(\Rightarrow\)\(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}< \frac{1}{-2}< 0\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(-1< A< 0\)
Vậy A không thể là 1 số nguyên
...
Có cách khác ngắn hơn nha bn!
Đặt:
\(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a>0\)(có 2019 dấu căn)
\(\Rightarrow3+\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a^2\) (có 2018 dấu căn)
\(\Rightarrow\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a^2-3\) (có 2018 dấu căn)
Thay vào A,ta đc:
\(A=\frac{3-a}{6-\left(a^2-3\right)}=\frac{3-a}{9-a^2}=\frac{1}{3+a}\)
Do a>0 \(\Rightarrow0< A=\frac{1}{3+a}< 1\)
Vậy : A ko thể là số nguyên
a) \(ab+bc+ca=1\)\(\Rightarrow\)\(\hept{\begin{cases}a^2b^2+b^2c^2+c^2a^2=1-2abc\left(a+b+c\right)\\\left(a+b+c\right)^2-2=a^2+b^2+c^2\end{cases}}\)
\(A=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{a^2b^2c^2+a^2b^2+b^2c^2+c^2a^2+a^2+b^2+c^2+1}\)
\(A=\sqrt{a^2b^2c^2-2abc\left(a+b+c\right)+\left(a+b+c\right)^2}\)
\(A=\sqrt{\left(abc-a-b-c\right)^2}=\left|abc-a-b-c\right|\)
Do a, b, c là các số hữu tỉ nên \(\left|abc-a-b-c\right|\) là số hữu tỉ
b) \(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}=1\)
\(B< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+2}}}}=\sqrt{2+2}=2\)
=> \(1< B< 2\) B không là số tự nhiên
c) câu này có ng làm r ib mk gửi link
à chỗ câu b) mình nhầm tí nhé
\(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}>1\)
Sửa dấu "=" thành ">" hộ mình
Ta có:
\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\)\(>\sqrt{1}=1\)
\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\)\(< \sqrt{2+\sqrt{2+\sqrt{2+...\sqrt{4}}}}=2\)
Vậy A không phải số tự nhiên.
Nếu đúng cho nhé.
con nay kho the