K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

Ta có:

\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\)\(>\sqrt{1}=1\)

\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\)\(< \sqrt{2+\sqrt{2+\sqrt{2+...\sqrt{4}}}}=2\)

Vậy A không phải số tự nhiên.

Nếu đúng cho nhé.

8 tháng 8 2017

con nay kho the

ta có:

\(\sqrt{2+\sqrt{2}+\sqrt{2}+....+\sqrt{2}}>\sqrt{1}=1\)

lại có: \(\sqrt{2+\sqrt{2}+\sqrt{2}+....+\sqrt{2}}< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}=\sqrt{2+\sqrt{2+\sqrt{2+...+2}}=2}\)\(\Rightarrow1< \sqrt{2+\sqrt{2+\sqrt{2+....+\sqrt{2}}}}< 2\)

\(\Rightarrow\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\) ko phải là STN

26 tháng 2 2022

Nhìn vào bài dễ thấy, \(A>1\)hay ta chứng minh \(A< 2\)

Vậy: \(\sqrt{2+\sqrt{2}}< \sqrt{2+2}=\sqrt{4}=2\)

\(\sqrt{2+\sqrt{2+\sqrt{2}}}< \sqrt{2+2}=\sqrt{4}=2\)

Nên:

\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}< \sqrt{2+2}=\sqrt{4}=2\)

\(\Rightarrow1< A< 2\)hay \(A\neℕ\left(đpcm\right)\)

4 tháng 8 2017

Dễ thấy M > 1

Mặt khác  \(M=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}+...+\sqrt{2}}}}< \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}+...+\sqrt{4}}}}\)

Mà  \(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}+...+\sqrt{4}}}}=2\)

Suy ra 1<M<2 nên M ko là số tự nhiên.

6 tháng 8 2016

Ta có: A < \(\sqrt{2+\sqrt{2+...+\sqrt{3}}}\) < \(\sqrt{3}\)

Lại có: A > \(\sqrt{2}\)

=> \(\sqrt{2}< A< \sqrt{3}\) => A ko phải số tự nhiên

 

7 tháng 8 2016

đang cộng tất cả căn 2 sao tự nhiên lại cộng căn 3 vào làm gì bạn ơi

31 tháng 12 2018

Xét tử : 

\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{56+\sqrt{56+\sqrt{56+...+\sqrt{64}}}}\)

\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{56+\sqrt{56+\sqrt{56+...+8}}}\)

\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{64}=3-8=-5\) ( bước này tự hiểu nhé ) 

Xét mẫu : 

\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}\)

\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{2+\sqrt{2+\sqrt{2+...+2}}}\)

\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{4}=6-2=4\) ( bước này cũng tự hiểu -,- ) 

\(\Rightarrow\)\(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}>\frac{-5}{4}>-1\) \(\left(1\right)\)

(Xét 1 lần nữa -,- ) 

Xét tử : 

\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}\)

\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{2+\sqrt{2+\sqrt{2+...+2}}}\)

\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{4}=3-2=1\)

Xét mẫu : 

\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{56+\sqrt{56+\sqrt{56+...+\sqrt{64}}}}\)

\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{56+\sqrt{56+\sqrt{56+...+8}}}\)

\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{64}=6-8=-2\)

\(\Rightarrow\)\(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}< \frac{1}{-2}< 0\) \(\left(2\right)\)

Từ (1) và (2) suy ra \(-1< A< 0\)

Vậy A không thể là 1 số nguyên

... 

2 tháng 1 2019

Có cách khác ngắn hơn nha bn!

Đặt:

\(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a>0\)(có 2019 dấu căn)

\(\Rightarrow3+\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a^2\) (có 2018 dấu căn)

\(\Rightarrow\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a^2-3\) (có 2018 dấu căn)

Thay vào A,ta đc:

\(A=\frac{3-a}{6-\left(a^2-3\right)}=\frac{3-a}{9-a^2}=\frac{1}{3+a}\)

Do a>0 \(\Rightarrow0< A=\frac{1}{3+a}< 1\)

Vậy : A ko thể là số nguyên

7 tháng 7 2019

a) \(ab+bc+ca=1\)\(\Rightarrow\)\(\hept{\begin{cases}a^2b^2+b^2c^2+c^2a^2=1-2abc\left(a+b+c\right)\\\left(a+b+c\right)^2-2=a^2+b^2+c^2\end{cases}}\)

\(A=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{a^2b^2c^2+a^2b^2+b^2c^2+c^2a^2+a^2+b^2+c^2+1}\)

\(A=\sqrt{a^2b^2c^2-2abc\left(a+b+c\right)+\left(a+b+c\right)^2}\)

\(A=\sqrt{\left(abc-a-b-c\right)^2}=\left|abc-a-b-c\right|\)

Do a, b, c là các số hữu tỉ nên \(\left|abc-a-b-c\right|\) là số hữu tỉ 

b) \(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}=1\)

\(B< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+2}}}}=\sqrt{2+2}=2\)

=> \(1< B< 2\) B không là số tự nhiên 

c) câu này có ng làm r ib mk gửi link 

7 tháng 7 2019

à chỗ câu b) mình nhầm tí nhé 

\(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}>1\)

Sửa dấu "=" thành ">" hộ mình