Tìm X biết: ( 2x + 3) mũ 2 = 15 mũ7: 15 mũ 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
b) Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)
\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)
b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)
c) \(3+3^2+3^3+...+3^{2007}\)
\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2005}\right)⋮13\)
Ta có : \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3\left[\left(2x-15\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-15=0\\\left(2x-15\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=15\\2x-15=1;-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{15}{2}\\2x=16;14\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{15}{2}\\x=8;7\end{cases}}\)
\(\Rightarrow\left(2x-15\right)^5=\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3\left[\left(2x-15\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-15=0\\\left(2x-15\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=15\\2x-15=1;-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=7,5\\x=8;7\end{cases}}\)
a) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2+4x-32\right)-1=0\)
\(\Leftrightarrow2x=-40\)
\(\Rightarrow x=-20\)
b) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=-12\)
\(\Rightarrow x=-3\)
c) \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)
\(\Leftrightarrow\left(x^2-4x+4\right)-\left(x^2+6x+9\right)-\left(4x+4\right)=5\)
\(\Leftrightarrow-14x=14\)
\(\Rightarrow x=-1\)
d) \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)
\(\Leftrightarrow4x^2-9-\left(x^2-2x+1\right)-\left(3x^2-15x\right)=-44\)
\(\Leftrightarrow17x=-34\)
\(\Rightarrow x=-2\)
e) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Leftrightarrow24x=24\)
\(\Rightarrow x=1\)
\(a)x+\left(-5\right)=-14\)
\(\Leftrightarrow x=-14-\left(-5\right)\)
\(\Leftrightarrow x=-14+5\)
\(\Leftrightarrow x=-9\)
\(b)-x+7=-23\)
\(\Leftrightarrow-x=-23+ \left(-7\right)\)
\(\Leftrightarrow-x=-30\)
\(\Leftrightarrow x=30\)
\(c)112-x=\left(-3\right).\left(-15\right)\)
\(\Leftrightarrow112-x=45\)
\(\Leftrightarrow x=112-45\)
\(\Leftrightarrow x=67\)
\(d)\left(x-15\right)-27=5^5:5^3\)
\(\Leftrightarrow\left(x-15\right)-27=5^2\)
\(\Leftrightarrow\left(x-15\right)-27=25\)
\(\Leftrightarrow x-15=52\)
\(\Leftrightarrow x=67\)
\(e)\left(2x+1\right)^2=81\)
\(\Leftrightarrow\left(2x+1\right)^2=9^2\)
\(\Leftrightarrow2x+1=9\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)
\(f)(x-5^3)=-27\)
\(f)(x-5^3)=-9^3\)
\(\Leftrightarrow x-5=-9\)
\(\Leftrightarrow x=-4\)
P/s: Bạn tự kết luận.
\((2x+3)^2=15^7:15^5\\\Rightarrow(2x+3)^2=15^2\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=15\\2x+3=-15\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=12\\2x=-18\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-9\end{matrix}\right.\)
Vậy: ...