\(B=\dfrac{4}{x^2-2x+2}\)
Tìm x để D đạt GTLN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\dfrac{-6}{\left(x+2\right)}\cdot\dfrac{-\left(x+1\right)}{6\left(x+2\right)}=\dfrac{\left(x+1\right)}{\left(x+2\right)^2}\)
b: A>0
=>x+1>0
=>x>-1
c: x^2+3x+2=0
=>(x+1)(x+2)=0
=>x=-2(loại) hoặc x=-1(loại)
Do đó: Khi x^2+3x+2=0 thì A ko có giá trị
B1: ĐXXĐ: \(x\ne\pm2;x\ne-1\)
\(=\left(\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}-\dfrac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\left(\dfrac{x-2-2x-2+x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}:\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}.\dfrac{\left(x-2\right)\left(x+1\right)}{-6\left(x+2\right)}=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}\)
b, \(A=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}>0\)
\(\Leftrightarrow2x+2>0\) (vì \(3\left(x+2\right)^2\ge0\forall x\))
\(\Leftrightarrow x>-1\).
-Vậy \(x\in\left\{x\in Rlx>-1;x\ne2\right\}\) thì \(A>0\).
\(D=\dfrac{2\left(\sqrt{x}-1\right)+9}{\sqrt{x}-1}=2+\dfrac{9}{\sqrt{x}-1}\)
Vì \(\dfrac{9}{\sqrt{x}-1}\le\dfrac{9}{0-1}=-9\Leftrightarrow D\le2-9=-7\)
Vậy \(D_{max}=-7\Leftrightarrow x=0\)
Ta có
\(B=\dfrac{xy^2+y^2\left(y^2-x\right)+2}{x^2y^4+y^4+2x^2+2}\)
\(B=\dfrac{xy^2+y^4-xy^2+2}{y^4\left(x^2+1\right)+2\left(x^2+1\right)}\)
\(B=\dfrac{y^4+2}{\left(x^2+1\right)\left(y^4+2\right)}\)
B=\(\dfrac{1}{x^2+1}\)
Ta có:
x2\(\ge0\)
x2+1\(\ge1\)
\(\dfrac{1}{x^2+1}\le1\)
\(\Rightarrow B\le1\)
Dấu "=" xảy ra khi
x2=0
=>x=0
Vậy GTLN của B là 1 khi x=0
\(P=\frac{1}{x^2+2x+6}\)
\(P=\frac{1}{\left(x+1\right)^2+5}\ge\frac{1}{5}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy Pmin = 1/5 khi và chỉ khi x = -1
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$
a.
\(A=\left[\frac{x+2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}+\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(x+\sqrt{x}+1)}\right].\frac{2}{\sqrt{x}-1}\)
\(=\frac{x+2+x-\sqrt{x}-(x+\sqrt{x}+1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}.\frac{2}{\sqrt{x}-1}\)
\(=\frac{2(x-2\sqrt{x}+1)}{(\sqrt{x}-1)^2(x+\sqrt{x}+1)}=\frac{2(\sqrt{x}-1)^2}{(\sqrt{x}-1)^2(x+\sqrt{x}+1)}=\frac{2}{x+\sqrt{x}+1}\)
b.
Ta thấy với $x\geq 0 ; x\neq 1$ thì $x+\sqrt{x}+1\geq 1$
$\Rightarrow A=\frac{2}{x+\sqrt{x}+1}\leq 2$
Vậy $A$ đạt max bằng $2$ khi $x=0$
Sửa đề: Tìm x để B đạt GTLN
\(B=\dfrac{4}{x^2-2x+2}\)
\(=\dfrac{4}{x^2-2x+1+1}\)
\(=\dfrac{4}{\left(x-1\right)^2+1}\)
\(\left(x-1\right)^2>=0\forall x\)
=>\(\left(x-1\right)^2+1>=1\forall x\)
=>\(B=\dfrac{4}{\left(x-1\right)^2+1}< =\dfrac{4}{1}=4\forall x\)
Dấu '=' xảy ra khi x-1=0
=>x=1
Vậy: \(B_{max}=4\) khi x=1