Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A.\(\left(\sqrt{x}+2\right)\) = -1 (ĐK: \(x\ge0\)
\(\Leftrightarrow\dfrac{1}{x-4}\left(\sqrt{x}+2\right)=-1\)
\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=-1\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}-2}=-1\)
\(\Leftrightarrow\sqrt{x}-2=-1\)
\(\Leftrightarrow\sqrt{x}=1\\ \Leftrightarrow x=1\left(TM\right)\)
Vậy x = 1
Bài 2: ĐK: \(x\ge0\)
Để \(B\in Z\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\in Z\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)\)\(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1,\pm3\right\}\)\(\Leftrightarrow x\in\left\{1\right\}\)
Bài 3:
a, Ta có: \(x+\sqrt{x}+1=x+2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}+1\\ =\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Ta có: 2 > 0 và \(x+\sqrt{x}+1>0\Rightarrow C>0\) và \(x\ne1\)
b, ĐK: \(x\ge0,x\ne1\)
\(C=\dfrac{2}{x+\sqrt{x}+1}\)
Ta có: \(x+\sqrt{x}+1=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có: \(\sqrt{x}\ge0\forall x\Rightarrow\sqrt{x}+\dfrac{1}{2}\ge\dfrac{1}{2}\forall x\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2\ge\dfrac{1}{4}\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge1\Leftrightarrow\dfrac{2}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le2\)
Dấu bằng xảy ra \(\Leftrightarrow\sqrt{x}+\dfrac{1}{2}=\dfrac{1}{2}\\ \Leftrightarrow x=0\left(TM\right)\)
Vậy MaxC = 2 khi x = 0
Còn cái GTNN chưa tính ra được, để sau nha
Bài 4: ĐK: \(x\ge0,x\ne1\)
\(D=\left(\dfrac{2x+1}{\sqrt{x^3-1}}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\left(\dfrac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\left(\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\)
\(=\left(\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-2\sqrt{x}+1\right)\)
\(=\left(\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\sqrt{x}-1\right)^2\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}\)
\(=\sqrt{x}-1\)
\(D=3\Leftrightarrow\sqrt{x}-1=3\Leftrightarrow x=2\left(TM\right)\)
\(D=x-3\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}-1=\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(1-\sqrt{x}+2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3-\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(L\right)\\x=9\left(TM\right)\end{matrix}\right.\)
Bài 5: \(E< -1\Leftrightarrow\dfrac{-3x}{2x+4\sqrt{x}}< -1\)\(\Leftrightarrow\dfrac{-3x}{2x+4\sqrt{x}}+1< 0\Leftrightarrow\dfrac{-3x+2x+4\sqrt{x}}{2x+4\sqrt{x}}< 0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}-x}{2x+4\sqrt{x}}< 0\Leftrightarrow\dfrac{\sqrt{x}\left(4-\sqrt{x}\right)}{2x+4\sqrt{x}}< 0\)
Ta có: \(\sqrt{x}>0\Leftrightarrow x>0\Leftrightarrow2x+4\sqrt{x}>0\) mà \(\dfrac{\sqrt{x}\left(4-\sqrt{x}\right)}{2x+4\sqrt{x}}< 0\)\(\Rightarrow\sqrt{x}\left(4-\sqrt{x}\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}< 0\left(L\right)\\4-\sqrt{x}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}>0\\4-\sqrt{x}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< 16,x\ne0\\\left\{{}\begin{matrix}x>0\\x< 16\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 16,x\ne0\\0< x< 16\end{matrix}\right.\)
\(M=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\div\dfrac{\sqrt{x}-1}{2}\)
(ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\))
\(=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right]\times\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{\left(x+2\right)+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\times\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{1}{x+\sqrt{x}+1}\)
\(M=\dfrac{1}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le1\)
Dấu "=" xảy ra khi x = 0
Cảm ơn nhé! Nhưng tớ làm ra câu a,b rồi :( cậu biết làm c,d không?
Lời giải:
ĐK: \(x> 0; x\ne 1; x\ne \frac{1}{4}\)
\(P=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}}-\frac{x+\sqrt{x}}{x-1}\right). \frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(=\left(\frac{2x+\sqrt{x}-1}{x}-\frac{x+\sqrt{x}}{x-1}\right). \frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(=\frac{x-1}{x}-\frac{x+\sqrt{x}}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(=\frac{x-1}{x}-\frac{\sqrt{x}(\sqrt{x}+1)}{(2\sqrt{x}-1)(\sqrt{x}+1)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(=\frac{x-1}{x}-\frac{\sqrt{x}}{2\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}=\frac{x-1}{x}\)
b) ĐK chưa để tìm GTLN, GTNN
c) Tại \(x=7+2\sqrt{10}\Rightarrow P=\frac{6+2\sqrt{10}}{7+2\sqrt{10}}\)
d) \(P=\frac{x-1}{x}=1-\frac{1}{x}< 1\) với moi \(x>0\) nên không tồn tại giá trị của $x$ để $P>1$
a: \(=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)
b: Khi x=7-4căn 3 thì \(P=\dfrac{7-4\sqrt{3}+16}{2-\sqrt{3}+3}\simeq4.92\)
d: Để P=7 thì \(x+16=7\sqrt{x}+21\)
\(\Leftrightarrow x-7\sqrt{x}-5=0\)
hay \(x=\dfrac{59+7\sqrt{69}}{2}\)
Lời giải:
ĐK: \(x\geq 0; x\neq 9\)
a)
Ta có:
\(D=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\)
\(=\frac{\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}+3)(\sqrt{x}-3)}+\frac{2\sqrt{x}(\sqrt{x}+3)}{(\sqrt{x}-3)(\sqrt{x}+3)}-\frac{3x+9}{(\sqrt{x}-3)(\sqrt{x}+3)}\)
\(=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-(3x+9)}{(\sqrt{x}+3)(\sqrt{x}-3)}\)
\(=\frac{3\sqrt{x}-9}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{3(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{3}{\sqrt{x}+3}\)
b) Để \(D=\frac{1}{3}\Leftrightarrow \frac{3}{\sqrt{x}+3}=\frac{1}{3}\)
\(\Rightarrow \sqrt{x}+3=9\Rightarrow \sqrt{x}=6\Rightarrow x=36\) (t/m)
c)
Vì \(\sqrt{x}\geq 0\Rightarrow \sqrt{x}+3\geq 3\)
Do đó: \(D=\frac{3}{\sqrt{x}+3}\leq \frac{3}{3}=1\)
Vậy $D_{\max}=1$ khi $x=0$
a) ĐKXĐ: x≠9, x≥0\(D=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\Rightarrow D=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\Rightarrow D=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\Rightarrow D=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\Rightarrow D=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\Rightarrow D=\dfrac{3}{\sqrt{x}+3}\)b) ta có D=\(\dfrac{1}{3}\Rightarrow\dfrac{3}{\sqrt{x}+3}=\dfrac{1}{3}\Leftrightarrow\sqrt{x}+3=9\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\)(thỏa mãn)
Vậy khi x=36 thì D=\(\dfrac{1}{3}\)
c) Ta có \(M=\dfrac{3}{\sqrt{x}+3}\) càng lớn thì \(\sqrt{x}+3\) càng nhỏ⇒Nếu \(M=\dfrac{3}{\sqrt{x}+3}\) lớn nhất thì \(\sqrt{x}+3\) nhỏ nhất
Ta có \(\sqrt{x}\)≥0⇒\(\sqrt{x}+3\)≥3
Vật GTNN của \(\sqrt{x}+3\) là 3⇒GTLN của M=\(\dfrac{3}{3}=1\)
Đẳng thức xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
\(D=\dfrac{2\left(\sqrt{x}-1\right)+9}{\sqrt{x}-1}=2+\dfrac{9}{\sqrt{x}-1}\)
Vì \(\dfrac{9}{\sqrt{x}-1}\le\dfrac{9}{0-1}=-9\Leftrightarrow D\le2-9=-7\)
Vậy \(D_{max}=-7\Leftrightarrow x=0\)