x:3 dư 1
x:4 dư 2
x:6 dư 4
x chia hết cho 13
tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-1\in\left\{1;6;2;3;-1;-6;-2;-3\right\}\)
\(\Leftrightarrow x\in\left\{2;7;3;4;0;-5;-1;-2\right\}\)
Gọi số đó là x.
Ta có: x + 2 chia hết cho 3; 4; 5; 6
=> x + 2 là BC(3, 4, 5, 6)
Vì BCNN(3, 4, 5, 6) = 60 => x + 2 = 60 . q (q \(\in\)
N)
Do đó x = 60 . q - 2
Mặt khác x chia hết cho 11. => chọn q = 1; 2; 3; 4; ...
Ta thấy q = 7 thì x = 60 x 7 - 2 = 418 chia hết cho 11
Vậy số cần tìm là 418
ta có: x :3 dư 1
x :4 dư 2
x : 5 dư 3
x :6 dư 4
=> x+2 : 3
x+2 :4
x+2 : 5
X+2 : 6
=>x+2=B(3;4;5;6)=>x+2={60;120;180;....;420;480;...}=>x={48;118;178;...;418;478;...}
x=418
vậy x=418
x:3 (dư 1)
x:4 (dư 2)
x:5 (dư3)
x:6(dư4)
x chia hết cho 11
\(\Rightarrow x+2\in BCNN\left(3;4;5;6\right)\)
Mà BCNN(3;4;5;6)=B(60)
={0;60;120;180;240;300;360;420;...}
={48;118;178;238;398;358;418;...}
Tong đó số 418 vừa với điều kiện trên
Vậy số cần tìm là 418
(ok cho tớ li-ke nha)
gọi so phải tìm là X
Theo đề bài ta co X+2 chia hết cho 3,4,5,6
suy ra X+2 là bội chung của 3,4,5,6
VCNN{3;4;5;6}=60 nên X+2=60.N
Do đó X=60.N-2{N=1;2;3;4...}
mặt khác X chia hết cho 11 lần lượt cho n = 1;2;3...
Ta thấy N=7 thì x=418 chia hết cho 11
vậy số nhỏ nhất phả tìm là 418
x :4 dư 3
=> x = 7
x : 5 dư 4
=> x = 9
x : 6 dư 5
=> x = 11
X chia hết cho 13
=> x = 13
Bài 1:
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12.
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.
b, a=-2
c,a=-20
Bài2.Xác định a và b sao cho
a)x^4+ax^2+1 chia hết cho x^2+x+1
b)ax^3+bx-24 chia hết cho (x+1)(x+3)
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21
Giải
a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2)
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p)
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi)
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p
Đồng nhất hệ số, ta có:
m = 1
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0)
n + p = a
n + p =0
p = 1
=>n = -1 và n + p = -1 + 1 = 0 = a
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d:
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21
b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**)
giải hệ (*), (**) trên ta được a= 2; b=-26
c) f(x) =x^4-x^3-3x^2+ax+b
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó:
f(x) =(x+1)(x-2).g(x) +2x-3
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1
d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21
f(-1) = -6 ---> -2-a+b =-6 (*)
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**)
Giải hệ (*); (**) trên ta được a=3; b=-1
x chia hết cho 5 suy ra x là BCNN(5)
5=5
=> B(5): { 0,5,10,15,20,25,30,35,40,45,50,55,...........,705,800...}
mà x thuộc N, 700<x<800
Vây x= 705
Đề có bị sai ko bn, mình chỉ giải được đến đoạn => x thuộc {-2; 10; 22; 34; ...} thôi, đoạn sau vì dài quá nên mình nghĩ đề bị sai.
52
Mik k rõ nhé