K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2023

a: Xét tứ giác OAMB có

\(\widehat{OAM}+\widehat{OBM}=90^0+90^0=180^0\)

=>MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

b: Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

mà OA=OB

nên OM là đường trung trực của AB

=>OM\(\perp\)AB tại H và H là trung điểm của AB

c: Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2\)

=>\(OH\cdot OM=R^2\)

23 tháng 11 2023

M A B C O H I

a/

Ta có

\(\widehat{OAM}=\widehat{OBM}=90^o\)

=> A và B cùng nhìn OM dưới 1 góc \(90^o\) => A và B thuộc đường tròn đường kính OM => B; O; A; M cùng thuộc 1 đường tròn

b/

Ta có

\(\widehat{BAC}=90^o\) (góc nt chắn nửa đường tròn)

\(\Rightarrow AC\perp AB\)

Ta có

\(OM\perp AB\) (2 tt cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm đường tròn vuông góc với dây cung nối 2 tiếp điểm)

=> AC//OM

Xét tg vuông AMO có 

\(MO\perp AB\left(cmt\right)\)

\(\Rightarrow MA^2=MH.MO\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích của hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông BMO có

\(MO\perp AB\left(cmt\right)\)

\(\Rightarrow OB^2=OH.MO\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích của hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Mà OB=OC (bán kính (O))

\(\Rightarrow OC^2=OH.MO\)

c/ 

Ta có

MA=MB (Hai tt cùng xp từ 1 điểm ngoài hình tròn thì khoảng cách từ điểm đó đến 2 tiếp điểm = nhau) (1)

AH=BH (2 tt cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm đường tròn vuông góc và chia đôi dây cung nối 2 tiếp điểm)

\(\Rightarrow AH=BH=\dfrac{AB}{2}\) (2)

Xét tg vuông AHO và tg vuông AMO có

\(\widehat{OAH}=\widehat{AMO}\) (cùng phụ với \(\widehat{AOM}\))

=> tg AHO đồng dạng với tg AMO (g.g.g)

\(\Rightarrow\dfrac{AH}{MA}=\dfrac{OA}{MO}\) (3)

Thay (1) và (2) vờ (3)

\(\Rightarrow\dfrac{\dfrac{AB}{2}}{MB}=\dfrac{OA}{MO}\Rightarrow\dfrac{AB}{2MB}=\dfrac{OA}{MO}\Rightarrow\dfrac{AB.MO}{2}-MB.OA\)

Gọi I' là giao của MO với (O), Nối AI'

Ta có

sđ cung AI' = sđ cung BI' (2 tt cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm đường tròn chia đôi dây cung bị chặn bởi 2 tiếp điểm)

\(sđ\widehat{MAI'}=\dfrac{1}{2}sđcungAI'\) (góc giữa tiếp tuyến và dây cung)

\(sđ\widehat{BAI'}=\dfrac{1}{2}sđcungBI'\) (góc nội tiếp đường tròn)

\(\Rightarrow\widehat{MAI'}=\widehat{BAI'}\) => AI' là phân giác của \(\widehat{BAM}\) Mà AI cũng là phân giác của \(\widehat{BAM}\)

Ta có I và I' cùng thuộc MO => \(I\equiv I'\Rightarrow I\in\left(O\right)\) cố định khi M thay đổi

 

 

25 tháng 1 2023

Đề là đường kính AD hay sao nhỉ?

25 tháng 1 2023

Mình làm tắt nha bạn không hiểu đâu thì hỏi lại nhé

a) MA, MB là tiếp tuyến

=> \(\widehat{OBM}=\widehat{OAM}=90^o\) (t/c tiếp tuyến)

=> \(\widehat{OBM}+\widehat{OAM}=180^o\)

mà 2 góc đối nhau

=> tứ giác AOBM nội tiếp

=> 4 điểm A, O, B, M cùng thuộc 1 đường tròn

b) Áp dụng hệ thức lượng vào tam giác OAM vuông tại A đường cao AH

=> \(AM^2=MH.MO\)

Áp dụng hệ thức lượng vào tam giác DAM vuông tại A đường cao AC

=> \(AM^2=MC.MD\)

=> \(AM^2=MH.MO=MC.MD\)

1: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

2: góc ACD=1/2*sđ cung AD=90 độ

ΔMAD vuông tại A có AC là đường cao

nên MA^2=MC*MD

Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB tại H

=>MH*MO=MA^2=MC*MD

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:

1.

Vì $MA, MB$ là tiếp tuyến của $(O)$ nên:

$MA\perp OA, MB\perp OB$

$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$

Tứ giác $MAOB$ có tổng 2 góc đối nhau $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.

$\Rightarrow M, A, O,B$ cùng thuộc 1 đường tròn.

2.

Vì $MA=MB, OA=OB$ nên $MO$ là trung trực cuả $AB$

$\Rightarrow MO\per AB$ tại $H$

Xét tam giác $AMO$ vuông tại $A$ có đường cao $AH$. Áp dụng hệ thức lượng trong tgv thì:

$MA^2=MH.MO$

Xét tam giác $MCB$ và $MBD$ có:

$\widehat{M}$ chung

$\widehat{MBC}=\widehat{MDB}$ (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó)

$\Rightarrow \triangle MCB\sim \triangle MBD$ (g.g)

$\Rightarrow \frac{MC}{MB}=\frac{MB}{MD}$

$\Rightarrow MC.MD=MB^2$

Mà $MB^2=MA^2\Rightarrow MA^2=MH.MO=MC.MD$ (đpcm)

 

 

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Hình vẽ: