Chứng minh N là không số chính phương biết :
N=11+11^2+11^3+...+11^13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt x=11...11(n+1 chữ số 1)
a=x+4;b=x+8
ab+4=(x+4)(x+8)+4
=x^2+12x+32+4
=(x+6)^2 cp
a) Xét các số có các chữ số tận cùng lần lượt là 0 ; 1 ; 2 ; 3 ; ... ; 9 và lấy các con số cụ thể là 0 ; 1 ; 2 ; .... ; 9
Ta có :
02 = 0
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
Qua đó ta thấy 1 số chính phương không thể có chữ số tận cùng là 2 ; 3 ; 7 và 8
b) Vì 1262 có chữ số tận cùng là 6
=> 1262 + 1 có chữ số tận cùng là 7 ( không phải số chính phương )
Ta có 10012 có chữ số tận cùng là 1
=> 10012 - 3 có chữ số tận cùng là 8 ( không phải số chính phương )
Ta có 112 và 113 đều có chữ số tận cùng là 1
=> 11 + 112 + 113 có chữ số tận cùng là 3 ( không là số chính phương )
Ta có 1010 có chữ số tận cùng là 0
=> 1010 + 7 có chữ số tận cùng là 7 ( không à số chính phương )
Ta có 5151 có chữ số tận cùng là 1
=> 5151 + 1 có chữ số tận cùng là 2 ( không là số chính phương )
Bài 1:
Đặt \(\underbrace{111....1}_{1009}=t\Rightarrow 9t+1=10^{1009}\)
Ta có:
\(a+b+1=\underbrace{11...11}_{1009}.10^{1009}+\underbrace{11...1}_{1009}+4.\underbrace{11....1}_{1009}+1\)
\(=t(9t+1)+t+4.t+1=9t^2+6t+1=(3t+1)^2\) là scp.
Ta có đpcm.
Bài 2:
Đặt \(\underbrace{111....1}_{n}=t\Rightarrow 9t+1=10^n\)
Ta có:
\(a+b+c+8=\underbrace{111..11}_{n}.10^n+\underbrace{111....1}_{n}+\underbrace{11...1}_{n}.10+1+6.\underbrace{111...1}_{n}+8\)
\(t(9t+1)+t+10t+1+6t+8=9t^2+18t+9\)
\(=(3t+3)^2\) là scp.
Ta có đpcm.
\(ab+1=\left(10.111...1+2\right)\left(10.111...1+4\right)+1=\)
\(=\left(10.111...1\right)^2+6.10.111...1+8+1=\)
\(=\left(10.111...1\right)^2+2.3.10.111...1+3^2=\left(10.111...1+3\right)^2\) Là số chính phương
\(AB+4=\left(11...1+4\right)\left(11...1+8\right)+4=\) (có n+1 chữ số 1)
\(=11...1^2+12x11...1+36=\left(11...1+2x6x11...1+6^2\right)=\)
\(=\left(11...1+6\right)^2=11...7^2\) (có n chữ số 1)
Lời giải:
Ta thấy $11^n$ với mọi số tự nhiên $n\geq 2$ thì sẽ chia hết cho $11^2$
$\Rightarrow 11^2+11^3+...+11^{13}\vdots 11^2$
Mà $11\not\vdots 11^2$
$\Rightarrow N=11+11^2+11^3+...+11^{13}\not\vdots 11^2$
Mà hiển nhiên $N\vdots 11$ (do mọi số hạng đều chia hết cho 11)
Do đó: $N$ chia hết cho $11$ nhưng không chia hết cho $11^2$
Suy ra $N$ không là số chính phương (đpcm)