Giúp mình giải câu hỏi này với:
1\2+1\4+1\8+...+1\1024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{2014}\)
\(\Rightarrow-A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(-A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(\Rightarrow-2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(\Rightarrow-2A-\left(-A\right)=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{10}}\right)\)
\(-A=2-\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{1}{2^{10}}-2\)
2A=1+1/2+1/4+1/8+.........+1/512
2A‐A=﴾1+1/2+1/4+1/8+....+1/512﴿‐﴾1/2+1/4+1/8+.....+1/1024﴿
A=1‐1/1024 =1023/1024
vậy A=1023/1024
Đặt A=\(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.........+\frac{1}{1024}\) (1)
Ta có: 2A=\(2+1+\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{512}\) (2)
Từ (1) và (2) \(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{4}+...........+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+..........+\frac{1}{1024}\right)\)
\(\Rightarrow A=2-\frac{1}{1024}\)
\(\Rightarrow A=\frac{2047}{1024}\)
1,2 : 0,5 - 1/4 : 0,25 + 1/8 ; 0,125 - 1/10 : 0,1
= 1/2 x 1/0,5 - 1/4 x 1/0,25 + 1/8 x 1/0,125 - 1/10 x 1/01
= 1 - 1 + 1 - 1
= 0
Ta có: \(-1=-2+1;-\frac{1}{2}=-1+\frac{1}{2};-\frac{1}{4}=-\frac{1}{2}+\frac{1}{4};...;-\frac{1}{1024}=-\frac{1}{512}+\frac{1}{1024}\)
\(\Rightarrow-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(=\left(-2+1\right)+\left(-1+\frac{1}{2}\right)+\left(-\frac{1}{2}+\frac{1}{4}\right)\)\(+...+\left(-\frac{1}{512}+\frac{1}{1024}\right)\)
\(=-2+1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{4}-...-\frac{1}{512}+\frac{1}{1024}\)
\(=-2+\frac{1}{1024}\)
\(=-\frac{2047}{1024}\)
Đặt: \(A=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{512}+\dfrac{1}{1024}\)
\(\Rightarrow\dfrac{4}{2}A=\dfrac{4}{2}\left(1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1024}\right)\)
\(\Rightarrow2A=2+1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}\)
\(\Rightarrow2A-A=\left(3+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\right)\)
\(\Rightarrow A=\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(3-1-\dfrac{1}{1024}\right)\)
\(\Rightarrow A=2-\dfrac{1}{1024}\)
\(\Rightarrow A=\dfrac{2047}{1024}\)
1+(1)/(2)+(1)/(4)+(1)/(8)+...+(1)/(512)+(1)/(1024)
A x 2 = 1 - ( 1/2 + 1/4 + 1/8 + 1/16 + ..... + 1/512 + 1/1024 ) - 1/1024
A x 2 = 1 - 1/1024 + A
A x 2 - A = 1 - 1/1024
A = 1 - 1/1024
A = 1023 /1024
-1-1/2-1/4-1/8......-1/1024
=-(1+1/2+1/4+1/8...+1/1024)
mà ta có 1024=2^10
nên -(1+1/2+1/4+1/8...+1/1024)
=-(2^9+2^8+2^7....+1)/2^10
=-(1023/1024)
=-1,99.........
mình sẽ làm lại bai này cho đúng nha
\(-1-\frac{1}{2}-\frac{1}{4}....-\frac{1}{1024}=-1-\left(\frac{1}{2}+\frac{1}{4}+...\frac{1}{1024}\right)\)
\(=-1-\left(\frac{1}{2^1}+\frac{1}{2^2}...+\frac{1}{2^{10}}\right)\)
\(=-1-\frac{1023}{1024}=\frac{-1024}{1024}-\frac{1023}{1024}=\frac{-2047}{1024}\)
vậy mới đúng nha
ta có\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
tách
\(B=\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2B=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(2B-B=\frac{1}{2}-\frac{1}{1024}\)
thay vào B ta có
\(\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{1024}=\frac{1}{1024}\)
\(A=\frac{1}{2}-\frac{1}{4}-\cdot\cdot\cdot-\frac{1}{1024}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\)
\(\Rightarrow2A=1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\)
\(\Rightarrow2A-A=\left(1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\right)-\left(\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\right)\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{2^9+1}{2^{10}}\)
\(\Rightarrow A=\frac{513}{1024}\)
ko bít
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(\Rightarrow A=1-\frac{1}{1024}=\frac{1023}{1024}\)