1,Cho 3x+y
Tìm GTLN của N=xy
Ai giúp mình với đang cần gấp lắm!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTLN của biểu thức :
- / 3x + 1 / + 7 - 3x
GIÚP MÌNH NHANH NHA, MÌNH ĐANG CẦN GẤP MÌNH TICK CHO !
16+5y-y2 = -y2\(=-y^2+2.\frac{5}{2}.y-\frac{25}{4}+\frac{89}{4}=\frac{89}{4}-\left(y-\frac{5}{2}\right)^2\)
ta thấy \(\left(y-\frac{5}{2}\right)^2\ge0\)
Suy ra 16+5y-y2 lớn nhất là bằng 89/4 khi và chỉ khi y - 5/2 = 0 <=> y = 5/2
\(B=-3x^2-12x-8=-3\left(x^2+4x+4\right)+4=-3\left(x+2\right)^2+4\le4\)
Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).
Ta có A=3-2(3x+1)2
Lại có 2(3x+1)2 lớn hơn hoặc bằng 0
=> 3-2(3x+1) bé hơn hoặc bằng 3
Dấu "=" xảy ra khi
2(3x+1)2=0
=>x=(-1/3)
Vậy GTLN của A=3 khi x=(-1/3)
\(A=3-2\left(3x+1\right)^2\le3\)
\(Max_A=3\Leftrightarrow3x+1=0\)
\(\Rightarrow x=\frac{-1}{3}\)
A = \(\dfrac{22-3x}{4-x}\)
A = \(\dfrac{3.\left(4-x\right)+10}{4-x}\)
A = 3 + \(\dfrac{10}{4-x}\)
A lớn nhất khi \(\dfrac{10}{4-x}\) lớn nhất. Vì 10 > 0; \(x\) \(\in\) Z nên \(\dfrac{10}{4-x}\) lớn nhất khi
4 - \(x\) = 1 ⇒ \(x\) = 4 - 1 ⇒ \(x\) = 3
Vậy Amin = 3 + \(\dfrac{10}{1}\) = 13 khi \(x\) =3
Kết luận giái trị lớn nhất của biểu thức là 13 xảy ra khi \(x\) = 3
Ta có x4-3x3-6x2+3x+1=0
<=> (x4+x3-x2)-(43+4x2-4x)-(x2+x-1) =0
<=> (x2-4x-1)(x2+x-1) =0
=> \(^{\orbr{\begin{cases}x^2-4x-1=0\\x^2+x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\pm\sqrt{5}\\x=\pm\frac{\sqrt{5}-1}{2}\end{cases}}}\)