Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x+\dfrac{3}{5}\right)\left(\left|x\right|-\dfrac{1}{4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{3}{5}=0\\\left|x\right|=\dfrac{1}{4}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=\dfrac{1}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{-\dfrac{1}{5};\dfrac{1}{4};-\dfrac{1}{4}\right\}\)
⇒\(\left\{{}\begin{matrix}3x+\dfrac{3}{5}=0\\\left|x\right|-\dfrac{1}{4}=0\end{matrix}\right.\) ⇒\(\left\{{}\begin{matrix}3x=0-\dfrac{3}{5}=-\dfrac{3}{5}\\\left|x\right|=0+\dfrac{1}{4}=\dfrac{1}{4}\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}x=-\dfrac{3}{5}:3=-\dfrac{1}{5}\\x=\dfrac{1}{4},-\dfrac{1}{4}\end{matrix}\right.\)
\(\left(\frac{2}{3}x-\frac{1}{2}\right).\frac{3}{4}-\frac{2}{5}x=4\frac{1}{4}\)
\(\frac{1}{2}x-\frac{3}{8}-\frac{2}{5}x=4\frac{1}{4}\)
\(\frac{1}{10}x=\frac{17}{4}+\frac{3}{8}\)
\(\frac{1}{10}x=\frac{37}{8}\)
\(x=\frac{185}{4}\)
\(\left(\frac{2}{3}x-\frac{1}{2}\right).\frac{3}{4}-\frac{2}{5}x=4\frac{1}{4}\)
\(\frac{1}{2}x-\frac{3}{8}-\frac{2}{5}x=\frac{17}{4}\)
\(\frac{1}{2}x-\frac{2}{5}x=\frac{17}{4}+\frac{3}{8}\)
\(\frac{1}{10}x=\frac{37}{8}\)
\(x=\frac{37}{8}:\frac{1}{10}\)
\(x=\frac{185}{4}\)
(x + 1) + (2x + 4) + (3x + 7)+...+(12x + 34) = 522
có số số hạng là :
( 34 - 1 ) : 3 + 1 = 12 ( số hạng )
tổng dãy số là :
( 34 + 1 ) x 12 : 2 = 210
( 1x + 2x + 3x + 4x + ..... + 12x ) + 210 = 522
78x + 210 = 522
78x = 312
x = 4
nha bạn
sg8xcjvjbjbjnvnbnjbjbjbjbjjjgggggggggggggggggggggggggggggggggggggggggggggnnnnnnn mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
a) \(x+xy-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)
\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)
\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)
Lập bảng tìm tiếp
b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)
Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ...
\(a,\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
vậy_____
1 < l x - 2 l < 4
=> l x - 2 l thuộc { 2 ; 3 }
=> x - 2 thuộc { - 3 ; - 2 ; 2 ; 3 }
=> x thuộc { - 1 ; 0 ; 4 ; 5 }
Vậy x thuộc { - 1 ; 0 ; 4 ; 5 }
4(x+1)-(3x+1)=14
4x+4-3x-1=14
4x-3x+4-1=14
1x+3=14
x =14-3
x =11