Bài2:
a)Chứng minh Ik//MQ.
b)tich số đo của góc MON
Giúp em với, em đang cần giắp ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tia Oa là tia phân giác của góc xOb, ta có:
m(Oa) = m(xOb)/2
Vì tia Ob là phân giác của góc xOb và góc yOa, ta có:
m(Ob) = (m(xOb) + m(yOa))/2
Vì góc bẹt xOy, ta có:
m(xOb) + m(yOa) = 180°
Thay vào các công thức trên, ta có:
m(Oa) = m(xOb)/2
m(Ob) = (m(xOb) + m(yOa))/2
m(xOb) + m(yOa) = 180°
Giải hệ phương trình này, ta có:
m(xOb) = 120°
m(yOa) = 60°
Vậy số đo của góc mOn là:
m(mOn) = m(xOb) + m(yOa) = 120° + 60° = 180°
Trần Đình Thiên
Giải ra rõ ràng, không ai dùng hệ pt để giải bài toán hình 7 ct mới đâu b?
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(\widehat{IBC}+\widehat{ICB}=\dfrac{\widehat{ABC}+\widehat{ACB}}{2}=45^0\)
nên \(\widehat{BIC}=135^0\)
Mọi người ơi giúp dùm em bài này, em đăng mà k có ai giúp:((
Ta có: M và D đối xứng nhau qua AB
nên AB là đường trung trực của MD
Suy ra: AD=AM
Xét ΔADM có AD=AM(cmt)
nên ΔADM cân tại A(Định nghĩa tam giác cân)
mà AB là đường trung trực ứng với cạnh đáy MD(gt)
nên AB là tia phân giác của \(\widehat{MAD}\)
Ta có: D và N đối xứng nhau qua AC(gt)
nên AC là đường trung trực của DN
Suy ra: AD=AN
Xét ΔADN có AD=AN(cmt)
nên ΔADN cân tại A(Định nghĩa tam giác cân)
mà AC là đường trung trực ứng với cạnh đáy DN(gt)
nên AC là tia phân giác của \(\widehat{DAN}\)
Ta có: \(\widehat{MAN}=\widehat{MAD}+\widehat{NAD}\)
\(=2\cdot\widehat{BAD}+2\cdot\widehat{CAD}\)
\(=2\cdot\widehat{BAC}\)
a/ Ta có: \(\Delta\) ABC cân tại A=> AB=AC
mà AC=10cm => AB=10cm
Ta có: AH là đường cao \(\Delta\) ABC => \(\Delta\) ABH vuông tại H
=> \(AH^2+BH^2=AB^2\) ( định lý Pytago)
dựa vào số liệu đầu bài và số liệu đã tính => BH=6cm
Ta có \(\Delta\) ABC cân, AH là đường cao => AH cũng là trung tuyến => H trung điểm BC
=> BH=CH=6cm
b/ Ta có: \(\Delta\) KAH vuông tại K => \(A_1+H_1=90^0=>H_1=90^o-A_1\left(1\right)\)
Ta có: \(\Delta\) ADH vuông tại D => \(A_2+H_2=90^o=>H_2=90^o-A_2\left(2\right)\)
Ta có: \(A_1=A_2\left(t.gABC\right)cân,AHlàđườngcaovàcũngsẽlàphângiác\left(\right)\) (3)
từ \(\left(1\right)\left(2\right)và\left(3\right)\) => \(H_1=H_2\)
Xét \(\Delta\) AKH và \(\Delta\) ADH có: \(\left\{{}\begin{matrix}A_1=A_2\\AHchung\\H_1=H_2\left(cmt\right)\end{matrix}\right.\)
=> \(\Delta\) AKH=\(\Delta\) ADH(g.c.g)
=> AK=AD
Bổ sung hình bạn nhé.
Hình dou:)