Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình.
a) Ta có: \(AB^2+AC^2=8^2+6^2=100\); \(BC^2=10^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\)
Theo định lý Pytago đảo \(\Rightarrow\Delta ABC\) vuông tại \(A\).
b) Xét tam giác \(IBC\). Theo định lý tổng 3 góc trong tam giác ta có
\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\\ \Rightarrow\widehat{BIC}=180^0-\left(\widehat{IBC}+\widehat{ICB}\right)\\ \Rightarrow\widehat{BIC}=180^0-\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)\\ \Rightarrow\widehat{BIC}=180^0-\dfrac{1}{2}\left(180^0-\widehat{A}\right)\\ \Rightarrow\overrightarrow{BIC}=180^0-\dfrac{1}{2}\left(180^0-90^0\right)=135^0\)
a/ Có
\(\left\{{}\begin{matrix}AB^2+AC^2=36+64=100\\BC^2=100\end{matrix}\right.\)
=> \(AB^2+AC^2=BC^2\)
=> t/g ABC vuông tại A
b/ Có
\(\widehat{ABC}+\widehat{ACB}=90^o\)
=> \(\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{ACB}}{2}=45^o\)
=> \(\widehat{IBC}+\widehat{ICB}=45^o\) (do phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I)
=> \(\widehat{BIC}=180^o-45^o=135^o\)
XétΔABC có \(AB^2+AC^2=CB^2\)
nên ΔABC vuông tại A
=>\(\widehat{ACB}+\widehat{ABC}=90^0\)
=>\(\widehat{IBC}+\widehat{ICB}=45^0\)
hay \(\widehat{BIC}=135^0\)
XétΔABC có \(AB^2+AC^2=CB^2\)
nên ΔABC vuông tại A
=>\(\widehat{ACB}+\widehat{ABC}=90^0\)
=>\(\widehat{IBC}+\widehat{ICB}=45^0\)
hay \(\widehat{BIC}=135^0\)
a, ta có : AB2 + AC2 = 62 + 82 =100
BC2 = 100
=> 100 = 100 hay AB2 + AC2 = BC2 => TAM GIÁC ABC CÓ 3 CẠNH AB, AC, BC LÀ TAM GIÁC VUÔNG (ĐL PY-TA-GO ĐẢO)
VẬY...
k cho mình nha, mình đánh mệt lắm
a) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Ta có: ΔABC vuông tại A(cmt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(Hai góc nhọn phụ nhau)
mà \(\widehat{ABC}=2\cdot\widehat{DBC}\)(BD là tia phân giác của \(\widehat{ABC}\))
và \(\widehat{ACB}=2\cdot\widehat{ECB}\)(CE là tia phân giác của \(\widehat{ACB}\))
nên \(2\cdot\widehat{DBC}+2\cdot\widehat{ECB}=90^0\)
\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=90^0\)
hay \(\widehat{IBC}+\widehat{ICB}=45^0\)
Xét ΔIBC có
\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{BIC}+45^0=180^0\)
\(\Leftrightarrow\widehat{BIC}=180^0-45^0\)
hay \(\widehat{BIC}=135^0\)
Vậy: \(\widehat{BIC}=135^0\)
\(Hình \) \(tự \) \(vẽ\)
a, Xét △\(ABC\) ta có :
\(AB\)2 + \(AC\)2\(= \)62 + 82= 100 ( cm ) mà \(BC\)2=102 =100 ( cm )
➙ AB2 + AC2 = BC2
➙ Tam giác ABC vuông
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(\widehat{IBC}+\widehat{ICB}=\dfrac{\widehat{ABC}+\widehat{ACB}}{2}=45^0\)
nên \(\widehat{BIC}=135^0\)
Mọi người ơi giúp dùm em bài này, em đăng mà k có ai giúp:((