cho tam giác ABC, trung tuyến AM, đường cao AH.D là điểm đối xứng với A qua M.
a) Tứ giác ABCD là hình gì? Chứng minh
b)Gọi E là điểm đối xứng của A qua BC. Chứng minh tam giác AED vuông
c) Chứng minh tứ giác BEDC là hình thang cân
d)Tìm điều kiện của tam giác ABC(để tứ giác ABCD là hình vuông)
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
b: E đối xứng A qua BC
=>AE vuông góc BC tại trung điểm của AE
=>AE vuông góc BC tại H và H là trung điểm của AE
Xét ΔAED có
H,M lần lượt là trung điểm của AE,AD
=>HM là đường trung bình
=>HM//ED
=>ED vuông góc EA
=>ΔAED vuông tại E
c: Xét ΔCAE có
CH vừa là đường cao, vừa là trung tuyến
=>ΔCAE cân tại C
=>CA=CE
mà BD=AC(ABDC là hình bình hành)
nên CE=BD
Xét tứ giác BCDE có
BC//DE
nên BCDE là hình thang
Hình thang BCDE có BD=CE
nên BCDE là hình thang cân