tìm 2 số x;y biết \(x^2+y^2;x^2-y^2;x^2\cdot y^2\) tỉ lệ nghịch vơi \(\frac{1}{25};\frac{1}{7};\frac{1}{576}\)bạn nào giúp mik giải với , mik sẽ tik cho bạn nào làm nhanh mà đúng nhất nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)
Số hạng ko chứa x tương ứng với 10-2k=0
=>k=5
=>SH đó là 8064
b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)
Số hạng ko chứa x tương ứng với 6-3k=0
=>k=2
=>Số hạng đó là 60
c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)
\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)
SH chứa x^10 tương ứng với 15-5k=10
=>k=1
=>Hệ số là -810
Bài 1.
Số lớn nhất có 2 chữ số là: \(99\)
Khi đó, tổng hai số đó là: \(99\times2=198\)
Tổng số phần bằng nhau là: \(1+2=3\left(phần\right)\)
Số lớn là: \(\left(198:3\right)\times2=132\)
Số bé là: \(198-132=66\)
Bài 2.
\(\dfrac{15}{39}+x=\dfrac{3}{11}\)
\(x=\dfrac{3}{11}-\dfrac{15}{39}\)
\(x=\dfrac{3}{11}-\dfrac{5}{13}\)
\(x=\dfrac{39}{143}-\dfrac{55}{143}\)
\(x=-\dfrac{16}{143}\)
~~~
\(x\times2+\dfrac{x}{2}=10\)
\(x\times\left(2+\dfrac{1}{2}\right)=10\)
\(x\times\left(\dfrac{4}{2}+\dfrac{1}{2}\right)=10\)
\(x\times\dfrac{5}{2}=10\)
\(x=10:\dfrac{5}{2}\)
\(x=10\times\dfrac{2}{5}\)
\(x=\dfrac{20}{5}\)
\(x=4\)
Bài 1 : Gọi \(a;b\) lần lượt là số lớn nhất và bé có 2 chữ số
Số lớn nhất có 2 chữ số và số bé bằng \(\dfrac{1}{2}\) số lớn
\(\Rightarrow\left\{{}\begin{matrix}a=98\\b=98:2=49\end{matrix}\right.\)
Vậy 2 số đó là \(a=98;b=49\)