so sánh : -(-1/16) mũ 100 và -(-1/8)mũ 150
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: a) \(M=1+5+5^2+...+5^{100}\)
\(5M=5+5^2+5^3+...+5^{101}\)
\(5M-M=\left(5+5^2+5^3+...+5^{101}\right)-\left(1+5+5^2+...+5^{100}\right)\)
\(4M=5^{101}-1\)
\(M=\frac{5^{101}-1}{4}\)
b) \(N=2+2^2+...+2^{100}\)
\(2N=2^2+2^3+...+2^{101}\)
\(2N-N=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(N=2^{101}-2\)
Bài 2:
a) \(16^{32}=\left(2^4\right)^{32}=2^{128}\)
\(32^{16}=\left(2^5\right)^{16}=2^{80}\)
Vì \(2^{128}>2^{80}\Rightarrow16^{32}>32^{16}\)
a) Vì \(-45< -16\) nên \(\left(-\dfrac{45}{17}\right)^{15}< \left(\dfrac{-16}{17}\right)^{15}\)
b) Vì \(21< 23\) nên \(\left(-\dfrac{8}{9}\right)^{21}< \left(-\dfrac{8}{9}\right)^{23}\)
c) \(27^{40}=3^{3^{40}}=3^{120}\)
\(64^{60}=8^{2^{60}}=8^{120}\)
Vì \(3< 8\) nên \(3^{120}< 8^{120}\) hay \(27^{40}< 64^{60}\)
con ai kooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
\(6^8và16^{12}=\left(6.8\right)^0và\left(16.3\right)^9=48< 48^9\)
6⁸ = (6²)⁴ = 36⁴
16¹² = (16³)⁴ = 4096⁴
Do 36 < 4096 nên 36⁴ < 4096⁴
Vậy 6⁸ < 16¹²
a) ta có: 3100 = (32)50 = 950
b) ta có: 330 = (33)10 = 2710 > 810
c) ta có: 36.67 = 62.67 = 69
Lại có: 433 > 427 = (43)9 = 649 > 69
=> 433>36.67
\(a,\)\(3^{100}\)\(=3^{2.50}\)=\(\left(3^2\right)\)\(^{50}\)\(=9^{50}\)
\(\Rightarrow\)\(3^{100}\)= \(9^{50}\)
So sánh: 1920 và 98.516
98.516=(32)8.516=316.516=(3.5)16=1516
Vì 19>15 và 20>16
Nên 1920 > 98.516
19 mũ 20=19+20=39
9 mũ 8 nhân 5 mũ 16=9+8 nhân 5 +16=65
39<65
1,1020và 9010
ta có:+,1020=(102)10=10010
+,9010=9010
vì 10010>9010=>1020>9010
2,(1/16)10 và (1/2)50
ta có:+, (1/16)10=(1/16)10
+,(1/2)50=(1/25)10=(1/32)10
vì (1/16)10>(1/32)10=>(1/16)10>(1/2)50
k mik nhé
\(a,\) \(10^{20}=10^{10+10}=10^{10}.10^{10}\)
\(90^{10}=9^{10}.10^{10}\)
Vì \(10^{10}.10^{10}>9^{10}.10^{10}\)
\(\Rightarrow10^{20}>90^{10}\)
Vậy \(10^{20}>90^{10}\)
\(b,\)\(\left(\frac{1}{16}\right)^{10}=\frac{1^{10}}{16^{10}}=\frac{1}{\left(4^2\right)^{10}}=\frac{1}{4^{20}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1^{50}}{2^{50}}=\frac{1}{\left(2^2\right)^{25}}=\frac{1}{4^{25}}\)
Vì \(\frac{1}{4^{20}}>\frac{1}{4^{25}}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
~~~~~~~~~~Hok tốt~~~~~~~~~~~
\(-\left(-\dfrac{1}{16}\right)^{100}=-\left(-\dfrac{1}{2^4}\right)^{100}=-\left(\dfrac{1}{2^4}\right)^{100}=-\left[\left(\dfrac{1}{2}\right)^4\right]^{100}=-\left(\dfrac{1}{2}\right)^{400}=-\dfrac{1}{2^{400}}\)
\(-\left(-\dfrac{1}{8}\right)^{150}=-\left(-\dfrac{1}{2^3}\right)^{150}=-\left(\dfrac{1}{2^3}\right)^{150}=-\left[\left(\dfrac{1}{2}\right)^3\right]^{150}=-\left(\dfrac{1}{2}\right)^{450}=-\dfrac{1}{2^{450}}\)
\(\dfrac{1}{2^{400}}>\dfrac{1}{2^{450}}\Rightarrow-\dfrac{1}{2^{400}}< -\dfrac{1}{2^{450}}\)
Vậy \(-\left(-\dfrac{1}{6}\right)^{100}< -\left(-\dfrac{1}{8}\right)^{150}\)