Cho tam giác ABC vuông tại A có đường cao AH. Gọi M, N lần lượt là trung điểm của các cạnh AB, AC.
Tính giá trị của biểu thức: T = (HA/HM)2 + (HA/HN)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HN//AB
=>góc NHA=góc HAM
=>góc NHA=góc MHA
=>HA là phân giác của góc NHM
HC vuông góc HA
=>HC là phân giác ngoài của ΔIHN
a/ Ta có AN vuông góc AC; HM vuông góc AC => AN//HM (1)
Ta có AM vuông góc AB; HN vuông góc AB => AM//HN (2)
=> Tứ giác AMHN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
AH; MN là hai đường chéo của hbh nên chúng cắt nhau tại trung điểm mỗi đường
b/ Trước hết ta phải c/m A, I, K thẳng hàng
Nối AI; AK
+ Xét tam giác AHK có
Hình bình hành AMHN có ^MAN=90 => ^ANM =90 => AN vuông góc HK nà NK=NH
=> tam giác AKH cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến là tam giác cân)
=> ^KAN=^HAN (1) (trong tam giác cân đường cao đồng thời là đường phân giác)
+ Xét tam giác AIH chứng minh tương tự ta cũng có
^HAM=^IAM (2)
+ Mà ^HAN+^HAM=^BAC=90 (3)
Từ (1) (2) (3) => ^KAN+^IAM=^HAN+^HAM=90
=> ^KAN+^HAN+HAM+^IAM=180 => A,I,K thẳng hàng
+ Ở trên ta đã chứng minh được tam giác AKH và tam giác AIH là tam giác cân tại A
=> AK=AH=AI => A là trung điểm của IK
+ Xét tam giác
a)Do A thuộc đường trung trực của HM nên AH=AM
Do a thuộc đường trung trực của HN nên AH=AN
Suy ra:AM=AN
Suy ra:tam giác AMN cân