K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

Khi lên lớp 7, em sẽ được học tính nhất \(OA=\frac{2}{3}AM\)

Sau đây cô chứng minh tính chất đó nhờ vào tỉ số diện tích để các em học sinh lớp dưới có thể hiểu được.

Hình vẽ như sau:

A B C N M O  

Ta thấy tam giác ANO và ONM có chung chiều cao nên \(\frac{S_{ANO}}{S_{ONM}}=\frac{AO}{OM}\)

Tương tự \(\frac{S_{AOC}}{S_{ONC}}=\frac{AO}{OM}\)

Vậy thì \(\frac{S_{AMC}}{S_{MNC}}=\frac{S_{AMO}+S_{AOC}}{S_{OMN}+S_{ONC}}=\frac{OA}{OM}\)

Lại có \(\frac{S_{AMC}}{S_{ABC}}=\frac{1}{2};\frac{S_{MNC}}{S_{ABC}}=\frac{1}{4}\Rightarrow\frac{S_{AMC}}{S_{MNC}}=2\)

Vậy thì \(\frac{AO}{OM}=2\Rightarrow\frac{AO}{AM}=\frac{2}{3}\Rightarrow AO=16cm.\)

7 tháng 3 2017

Các bạn giúp mình nha!!!

7 tháng 3 2017

đợi mk chút.......

26 tháng 8 2023

Ta có:

Nối \(B\) với \(O\)

\(S_{OCM}=S_{OMB}\left(BM=MC\right)\) \(\Rightarrow\) chung đường cao hạ từ \(O\)

\(S_{CNB}=S_{ACN}=\left(AN=NB\right)\Rightarrow\) chung đường cao hạ từ \(C\)

\(S_{ONB}=S_{AON}.S_{AON}=\dfrac{1}{2}S_{ABC}-S_{ONMB}.S_{OMC}\)

\(=\dfrac{1}{2}S_{ABC}-S_{ONMB}\)

\(\Rightarrow S_{AON}=S_{OMC};S_{OMC}=\dfrac{1}{6}S_{ABC}\) và \(S_{ACO}\)

Độ dài đoạn \(OA\) là:

\(24.\left(\dfrac{1}{2}+\dfrac{1}{6}\right)=16\left(cm\right)\)

26 tháng 8 2023

ĐÂY LÀ TOÁN LỚP SÁU MÌNH CHỌN NHẦM LỚP MONG CÁC BẠN THÔNG CẢM

 

8 tháng 7 2017

BM=MC => AM là đường trung tuyến của tam giác ABC

AN=NB => CN là đường trung tuyến của tam giác ABC

AM cắt CN tại O => O là trọng tâm của tam giác ABC => \(AO=\frac{2}{3}AM=\frac{2}{3}.24=16\left(cm\right)\)

8 tháng 7 2017

A B C M N O

Nối B với O 

SOCM = SOMB (BM = MC ; chung đường cao hạ từ O)  

SCNB = SACN (AN = NB ; chung đường cao hạ từ C) .

SONB = SAON . SAON \(\frac{1}{2}\)SABC - SONMB. SOMC = \(\frac{1}{2}\)SABC - SONMB

=> SAON = SOMC ; SOMC = \(\frac{1}{6}\)SABC và SACO 

=> độ dài đoạn OA = \(24\times\left(\frac{1}{2}+\frac{1}{6}\right)=16\left(cm\right)\)

15 tháng 7 2023

a) Xét △ABM vuông tại A và △DBM vuông tại D có:

BM chung

AB=DB=3cm(gt)

=> △ABM=△DBM (cạnh huyền-cạnh góc vuông) => AM=DM(2 cạnh t/ứ)

b) Xét △AMN và △DMC có:

AMN=DMC(2 góc đối đỉnh)

AM=DM(cmt)

MAN=MDC(gt)

=> △AMN=△DMC(g.c.g) => MN=MC(2 cạnh tướng ứng) => △MCN cân tại M

c) Vì △AMN=△DMC(cmt) => AN=DC(2 cạnh tương ứng)

Ta có AB=BD;AN=DC;BN=AN+AB;BC=BD+DC => BN=BC=> △BNC cân tại B

Vì △ABM=△DBM(cmt)=> ABM=DBM=> NBK=CBK (A thuộc BN; D thuộc BC;M thuộc BK) => BK là phân giác NBC

=> Trong △BNC cân tại B, BK là đường phân giác, đường trung trực, đường trung tuyến, đường cao,... (t/c) => BK là đường trung trực của CN

d) Áp dụng định lý Pytago vào △ABC vuông tại A có: AB2+AC2=BC^2

=> 9+16=25=BC^2 (cm) => BC = 5 cm

Ta có BD+DC=BC;BD=3cm=> DC=2cm

Ta có AN=DC(cmt) => AN=2cm

Áp dụng định lý Pytago vào △ANC vuông tại A có:

AN^2+AC^2=NC^2

=> 4+16=NC^2

=> NC= căn 20 = 2 x căn 5 (cm)

Vì BK là trung trực NC => K là trung điểm NC => KC = 1/2 NC = căn 5 (cm)

Áp dụng định lý Pytago vào △BKC vuông tại K có:

BC^2=BK^2+KC^2 => BK^2=BC^2+KC^2=25-5=20cm => BK=căn 20=2 nhânnhân căn 5 (cm)