K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

xài UCT thử được ko bn

24 tháng 7 2017

\(BDT\Leftrightarrow\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge1\)

Do abc=1 nên tồn tại \(\left(a,b,c\right)~\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\)

thay vào,\(BDT\Leftrightarrow\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}\ge1\)

Áp dụng BĐT cauchy-schwarz:

\(\frac{x^2}{x^2+2xy}+...\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\left(đPcM\right)\)

6 tháng 8 2016

\(a^2+b^2-c^2=a^2+b^2-\left(-a-b\right)^2=-2ab\)

\(VT=-\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=-\frac{1}{2}.\frac{a+b+c}{abc}=0\)

19 tháng 12 2020

Từ đkđb

\(\Leftrightarrow2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=0\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\)

\(\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-\dfrac{1}{c^3}\)

\(\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

19 tháng 12 2020

Hớ hớ bài này mình cũng làm rồi.

Ta có: (a+b+c)2=a2+b2+c2

<=> a2+b2+c2+2(ab+bc+ca)=a2+b2+c2

<=>2(ab+bc+ca)=0

<=>ab+bc+ca=0

\(\Leftrightarrow\dfrac{ab+bc+ca}{abc}=0\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

=>\(\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3=\left(-\dfrac{1}{c}\right)^3\)

=> \(\dfrac{1}{a^3}+\dfrac{3}{a^2b}+\dfrac{3}{ab^2}+\dfrac{1}{b^3}=-\dfrac{1}{c^3}\)

=>\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-\dfrac{3}{ab}.\left(-\dfrac{1}{c}\right)=\dfrac{3}{abc}\)

=> Đpcm.

23 tháng 6 2021

\(VT=\dfrac{a^3bc}{c+ab^2c}+\dfrac{ab^3c}{a+abc^2}+\dfrac{abc^3}{b+a^2bc}\)

\(=abc\left(\dfrac{a^2}{c+ab^2c}+\dfrac{b^2}{a+abc^2}+\dfrac{c^2}{b+a^2bc}\right)\)

Áp dụng bđt Cauchy-Schwarz dạng engel có:

\(VT\ge\dfrac{abc\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}\)\(=\dfrac{abc\left(a+b+c\right)}{1+abc}\)

Dấu "=" xảy ra khi \(a=b=c\)

Vậy...

23 tháng 6 2021

Sai đề không bạn,tại a=b=c=2 thay vào không thỏa mãn nha

17 tháng 11 2021

\(1,a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+2bc+c^2\Leftrightarrow b^2+c^2=a^2-2bc\)

Tương tự: \(\left\{{}\begin{matrix}a^2+b^2=c^2-2ab\\c^2+a^2=b^2-2ac\end{matrix}\right.\)

\(\Leftrightarrow N=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ca}+\dfrac{c^2}{c^2-c^2+2ac}\\ \Leftrightarrow N=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{a^3+b^3+c^3-3abc+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)