Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\dfrac{a^3bc}{c+ab^2c}+\dfrac{ab^3c}{a+abc^2}+\dfrac{abc^3}{b+a^2bc}\)
\(=abc\left(\dfrac{a^2}{c+ab^2c}+\dfrac{b^2}{a+abc^2}+\dfrac{c^2}{b+a^2bc}\right)\)
Áp dụng bđt Cauchy-Schwarz dạng engel có:
\(VT\ge\dfrac{abc\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}\)\(=\dfrac{abc\left(a+b+c\right)}{1+abc}\)
Dấu "=" xảy ra khi \(a=b=c\)
Vậy...
Sai đề không bạn,tại a=b=c=2 thay vào không thỏa mãn nha
\(1,a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+2bc+c^2\Leftrightarrow b^2+c^2=a^2-2bc\)
Tương tự: \(\left\{{}\begin{matrix}a^2+b^2=c^2-2ab\\c^2+a^2=b^2-2ac\end{matrix}\right.\)
\(\Leftrightarrow N=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ca}+\dfrac{c^2}{c^2-c^2+2ac}\\ \Leftrightarrow N=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{a^3+b^3+c^3-3abc+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
Mình theo một số nguồn trên Internet thì đề đúng là : \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}.\)
Ta có :
\(a^2+b^2+c^2-2bc-2ca+2ab\)
\(=\left(a+b-c\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2-2bc-2ca+2ab\ge0\)
\(\Rightarrow a^2+b^2+c^2\ge2bc+2ca-2ab\)
Dấu bằng xảy ra khi \(a+b=c\)
Mà \(\frac{5}{3}< \frac{6}{3}=2\)
\(\Rightarrow a^2+b^2+c^2< 2\)
\(\Rightarrow2bc+2ac-2ab\le a^2+b^2+c^2< 2\)
\(\Rightarrow2bc+2ac-2ab< 2\)
Do a ; b ; c > 0
\(\Rightarrow\frac{2bc+2ac-2ab}{2abc}< \frac{2}{2abc}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
Vậy ...
Câu 2: \(\left(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\right)^2=\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2+2\left(x^2+y^2+z^2\right)\)
\(=\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2+6\)
Áp dụng bất đẳng thức AM - GM ta có :
\(\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2\ge3\sqrt[3]{\left(\frac{xy}{z}\right)^2\left(\frac{yz}{x}\right)^2\left(\frac{xy}{y}\right)^2}=3\sqrt[3]{\frac{\left(xyz\right)^4}{\left(xyz\right)^2}}=3\)\(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge\sqrt{3+6}=3\left(dpcm\right)\)
tại sao lại suy ra đc \(3\sqrt[3]{\frac{\left(xyz\right)^4}{\left(xyz\right)^{^2}}}=3\) vậy cậu?
xài UCT thử được ko bn
\(BDT\Leftrightarrow\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge1\)
Do abc=1 nên tồn tại \(\left(a,b,c\right)~\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\)
thay vào,\(BDT\Leftrightarrow\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}\ge1\)
Áp dụng BĐT cauchy-schwarz:
\(\frac{x^2}{x^2+2xy}+...\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\left(đPcM\right)\)