Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+2bc+c^2\Leftrightarrow b^2+c^2=a^2-2bc\)
Tương tự: \(\left\{{}\begin{matrix}a^2+b^2=c^2-2ab\\c^2+a^2=b^2-2ac\end{matrix}\right.\)
\(\Leftrightarrow N=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ca}+\dfrac{c^2}{c^2-c^2+2ac}\\ \Leftrightarrow N=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{a^3+b^3+c^3-3abc+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
Lời giải:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2$
$\Rightarrow (\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2=4$
$\Leftrightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac})=4$
$\Leftrightarrow 2+2(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac})=4$
$\Leftrightarrow \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1$
$\Leftrightarrow \frac{a+b+c}{abc}=1$
$\Leftrightarrow a+b+c=abc$ (đpcm)
b^2+c^2-a^2=(b+c)^2-2bc-a^2=(-a)^2-2bc+a^2=-2bc. Tuong tu roi quy dong len ban nhe^^
Từ giả thiết ta có : \(a+b=-c\Rightarrow a^2+b^2=c^2-2ab\left(1\right)\)
Chứng minh tương tự ta cũng có \(\hept{\begin{cases}a^2+c^2=b^2-2ac\left(2\right)\\b^2+c^2=a^2-2bc\left(3\right)\end{cases}}\)
Ta thay (1), (2), (3) vào phương trình đã cho ta được:
\(\frac{1}{a^2-2bc-a^2}+\frac{1}{b^2-2ac-b^2}+\frac{1}{c^2-2ab-c^2}\)
\(=\frac{1}{-2bc}+\frac{1}{-2ac}+\frac{1}{-2ab}=-\frac{1}{2}\left(\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}\right)\)
\(=\frac{1}{-2}\left(\frac{a+b+c}{abc}\right)=-\frac{1}{2}\left(\frac{0}{abc}\right)=0\RightarrowĐPCM\)