K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A có BC^2=AB^2+AC^2

=>BC^2=5^2+12^2=169

=>BC=13(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot13=5\cdot12=60\)

=>AH=60/13(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>\(BH=\dfrac{AB^2}{BC}=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\)

Xét ΔAHB vuông tại H có

\(sinBAH=\dfrac{BH}{AB}=\dfrac{25}{13}:5=\dfrac{5}{13}\)

=>\(\widehat{BAH}\simeq22^0\)

b: HB=HD

=>HD=25/13(cm)

BD=25/13*2=50/13(cm)

BD+DC=BC

=>DC=BC-BD=13-50/13=119/13(cm)

=>R=DC/2=119/26(cm)

c: Xét (O) có

ΔCMD nội tiếp

CD là đường kính

Do đó: ΔCMD vuông tại M

Xét ΔABD có

AH vừa là đường cao, vừa là đường trung tuyến

Do đó: ΔABD cân tại A

=>AB=AD

Xét tứ giác AHDM có

\(\widehat{AHD}+\widehat{AMD}=180^0\)

=>AHDM là tứ giác nội tiếp

=>\(\widehat{ADH}=\widehat{AMH}=\widehat{ABD}\)

ΔAMD vuông tại M

=>AM<AD

mà AD=BA

nên AM<AB

d: \(DM\perp AC;AB\perp AC\Leftrightarrow\)DM//AB

=>\(\widehat{MDA}=\widehat{DAB}\)

=>\(\widehat{MDA}=2\cdot\widehat{DAH}\)

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

29 tháng 12 2021

a: R=HC/2=6,4:2=3,2(cm)

26 tháng 4 2016

Bài làm:

a) Xét tam giác ABH và tam giác ACH có:

Góc AHC = góc AHB = 90o

AB = AC

Vì AB = AC => tam giác ABC cân tại A => Góc B = góc C

Vậy tam giác ABH = tam giác ACH (c.huyền - góc nhọn)

=> HB = HC = 8 : 2 = 4 cm

Áp dụng định lí Py Ta go cho tam giác ABH vuông tại H ta có:

HA2 + HB2 = AB2

HA2 = AB2 - HB2

        = 52  - 42 = 9

=> AH = \(\sqrt{9}=3cm\)

b) Xét tam giác DBH và tam giác ECH có:

BH = CH (chứng minh ở câu a)

Góc D = góc E = 90o

Góc B = góc C

Vậy tam giác DBH = tam giác ECH (c,huyền - g.nhọn)

=> HD = HE (2 cạnh tương ứng)

=> Tam giác HDE cân (tại H)

c) Vì tam giác DHB vuông tại D nên:

BH là cạnh lớn nhất (c.huyền)

=> BH > DH mà BH = CH

=> CH > DH

d) Vì GH = 1/3AH => G là trọng tâm của tam giác ABC

=> BN là đường trung tuyến 

=> NA = NC

e) Ta có: GH = 1/3AH = 1/3 . 3 = 1 cm

Áp dụng định lí Py Ta Go cho tam giác GBH vuông tại H ta có:

HG2 + HB2 = BG2

BG2 = 12 + 42 = 17

=> BG = \(\sqrt{17}cm\)

Ta lại có: BG = 2/3 BN

=> BN = \(\frac{BG}{\frac{2}{3}}=\sqrt{17}.\frac{3}{2}=\frac{3\sqrt{17}}{2}cm\)

 

 

 

19 tháng 10 2021

c: Xét ΔAHB vuông tại H có HM là đường cao 

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao 

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

27 tháng 1 2016

bạn nhấn vào đúng 0 sẽ ra đáp án

27 tháng 1 2016

du

a: XétΔABD có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABD cân tại A

=>AB=AD
 b: Ta có: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-30^0=60^0\)

Xét ΔABD cân tại A có \(\widehat{ABD}=60^0\)

nên ΔABD đều

c: Ta có: ΔABD đều

=>\(\widehat{DAB}=60^0\)

Ta có: \(\widehat{DAB}+\widehat{DAC}=\widehat{BAC}\)

=>\(\widehat{DAC}=90^0-60^0=30^0\)

Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)

nên ΔDAC cân tại D

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

\(\widehat{HDA}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDHA=ΔDEC

=>AH=EC

d: Xét ΔAHB vuông tại H có \(sinB=\dfrac{AH}{AB}\)

=>\(\dfrac{AH}{5}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(AH=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)

XétΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}\)

=>\(\dfrac{5}{BC}=sin30=\dfrac{1}{2}\)

=>BC=5*2=10(cm)