K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

a) Ta có số hạng thứ x là  \(\frac{x}{\left(x+1\right)^2}\)( cái này bạn tự nhìn quy luật của nó rùi CM nhé)

\(\Rightarrow\)Số hạng thứ 35 là khi x=35 và bằng: \(\frac{35}{\left(35+1\right)^2}=\frac{35}{1296}\)

b) Gọi \(Q\left(x\right)=\frac{x}{\left(x+1\right)^2}+\frac{\left(x+1\right)}{\left(x+1+1\right)^2}+....\)

Ta có: \(Q\left(1\right)=\frac{1}{\left(1+1\right)^2}\)

 \(Q\left(2\right)=Q\left(1\right)+\frac{2}{\left(2+1\right)^2}\)

\(Q\left(3\right)=Q\left(2\right)+\frac{3}{\left(3+1\right)^2}\)...........

\(\Rightarrow Q\left(x\right)=Q\left(x-1\right)+\frac{x}{\left(x+1\right)^2}\)

\(\Rightarrow\)Ta có quy trình sau: \(X=X+1:A=A+\frac{X}{\left(X+1\right)^2}\) \(CALC\)  \(1=\frac{1}{4}===....\)Ấn đến khi X=n ta tíh đc Q(n) (cái này mk ghi quy trình tắt thui bạn tự ghi các phím vào nhé)

Áp dụng quy trình trên ta tíh đc \(Q\left(30\right)\approx2,4140544951\)

3 tháng 10 2017

=2,4140544951 k mik nha bạn

19 tháng 8 2015

bn vào đây xem nhé Chứng minh rằng" có vô số số nguyên tố>? | Yahoo Hỏi & Đáp

12 tháng 11 2016

Giải:

Giả sử số số nguyên tố là hữu hạn thì ta xét số A bằng tích của tất cả các số nguyên tố đó cộng 1. Rõ ràng A nằm ngoài tập hợp các số nguyên tố (vì lớn hơn tất cả các số nguyên tố) nên nó không phải là số nguyên tố. Gọi B là ước số nhỏ nhất của A. Đến lượt B cũng không phải là số nguyên tố vì ta có thể thấy A không chia hết cho số nguyên tố nào (trong tập hợp hữu hạn các số nguyên tố, như đã giả thiết). Vậy B phải chia hết cho một số C. Số C này, dĩ nhiên là ước số của A, và nhỏ hơn B, mâu thuẫn. Tóm lại số số nguyên tố phải là vô hạn.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) \( - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ... + {\left( { - \frac{1}{2}} \right)^n} + ...\)

Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} =  - \frac{1}{2}\) và công bội \(q =  - \frac{1}{2}\) nên: \( - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + ... + {\left( { - \frac{1}{2}} \right)^n} + ... = \frac{{ - \frac{1}{2}}}{{1 - \left( { - \frac{1}{2}} \right)}} =  - \frac{1}{3}\)

b) \(\frac{1}{4} + \frac{1}{{16}} + \frac{1}{{64}} + ... + {\left( {\frac{1}{4}} \right)^n} + ...\)

Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = \frac{1}{4}\) và công bội \(q = \frac{1}{4}\) nên: \(\frac{1}{4} + \frac{1}{{16}} + \frac{1}{{64}} + ... + {\left( {\frac{1}{4}} \right)^n} + ... = \frac{{\frac{1}{4}}}{{1 - \frac{1}{4}}} = \frac{1}{3}\)

8 tháng 9 2016

a. Ta thấy: 70 chia hết cho 5 và 7

                 35n+3 không chia hết cho 5 và 7

nên phân số 35n+3/70 khi rút gọn đến tối giản thì mẫu chứa thừa số nguyên tố 5 và 7

Vậy 35+3/70 viết được dưới dạng số thập phân vô hạn tuần hoàn tạp

13 tháng 10 2018

sahcs bổ trợ nâng cao toán 7

bài tập toán số thằng nào học 7a5 cho tau

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

\(B = \left\{ {7,1; - 2,(61);0;5,14;\frac{4}{7}; - \sqrt {81} } \right\}\)

\(C = \left\{ {\sqrt {15} } \right\}\)

Chú ý:

Số \( - \sqrt {81} \) là số hữu tỉ vì \( - \sqrt {81} =-9\)

22 tháng 10 2015

giúp mk đy các p iu dấu ơj

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(S = \frac{{{u_1}}}{{1 - q}} = \frac{{\frac{2}{3}}}{{1 - \frac{{ - 1}}{4}}} = \frac{8}{{15}}\)

b) \(1,\left( 6 \right) = \frac{5}{3}\)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Ta có: \(\frac{1}{4} = 0,25\). Đây là số thập phân hữu hạn.

\( - \frac{2}{{11}} =  - 0,1818....\). Đây là số thập phân vô hạn tuần hoàn. Chu kì của nó là 18. Ta viết \( - \frac{2}{{11}}=-0,(18)\)