K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

sai đề rồi bạn

23 tháng 7 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-\left(a+b+c\right)}{ac+bc+c^2}\)

\(\Leftrightarrow\frac{a+b}{ab}==\frac{-a-b}{ac+bc+c^2}\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)=-\left(a+b\right)ab\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+\left(a+b\right)ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

=> a = - b hoặc a= - c hoặc b = - c

Với \(a=-b\) thì \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{-b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\) (1)

\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)(2)

Từ (1);(2) => \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{a^3+b^3+c^3}\)

Còn 2 TH nữa là b = - c và - c = a bn xét tiếp nha

23 tháng 7 2017

Có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\frac{bc+ca+ab}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(bc+ca+ab\right)=abc\)

\(\Leftrightarrow abc+ca^2+a^2b+b^2c+abc+ab^2+c^2b+c^2a+abc=abc\)

\(\Leftrightarrow3abc+ca^2+a^2b+b^2c+ab^2+c^2b+c^2a=abc\)

\(\Leftrightarrow2abc+a^2b+a^2c+b^2c+b^2a+c^2b+c^2a=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

<=> a + b = 0    hoặc     b + c = 0     hoặc     c + a = 0

Với a + b = 0

=> a = -b 

Thay vào biểu thức cần chứng minh 

=> \(\frac{1}{c^3}=\frac{1}{c^3}\) (đúng)

Tượng tự với 2 trường hợp còn lại .

Câu 2: 

f(3)=f(-3)

=>9a+3b+c=9a-3b+c

=>6b=0

hay b=0

=>f(x)=ax2+c

=>f(x)=f(-x)

2 tháng 9 2015

CM a + b + c = 0 

=> a + b = -c ; b + c = -a ; c+a a = -b 

E = \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=1\)

2 tháng 9 2015

Như thế này :

\(a^3+b^3+c^3=3abc\)

=> (a+b)^3 - 3ab(a+b) - 3abc + c^3 = 0

=> ( a+  b +c )^3 - 3(a+b)c(a+b+c) - 3ab(a+b+c) = 0 

=> \(\left(a+b+c\right)\left[\left(a+b+c\right)^2-3bc-3ac-3ab\right]=0\)

=> ( a + b + c)(a^2 + b^2 + c^2 - ab - bc  - ca ) = 0 

=> 1/2 ( a + b + c )(2a^2 + 2b^2 + 2x^2 - 2ab - 2bc - 2 ca ) = 0

=> 1/2 (a+b+c) [ ( a-  b)^2 + ( b - c)^2 + (c-a)^2]  = 0 

Bì ngoặc thứ hai luôn >= 0 => a + b + c = 0 

hoặc a = b ; b =c = c=a => a = =b =c 

 

18 tháng 6 2019

Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html

18 tháng 6 2019

Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html

27 tháng 8 2016

Thay a = -1 , b=1 vào biểu thức A 

=> A = 5.(-1)^3.1^8 = - 5

Thay a = -1 , b= 2 vào biểu thức B

=>B = -9.(-1)^4 . 2^2 = - 36

Ta có : 

C = ax + ay + bx + by = a(x+y) + b(x+y) = (x+y)(a+b)

Thay a+b = - 3 , x+y = 17 vào biểu thức C

C = ( -3)(17) = -51

a:

ĐKXĐ: x<>2

|2x-3|=1

=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Thay x=1 vào A, ta được:

\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)

b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)

\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)

\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)

c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)

\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)

Để P lớn nhất thì \(\dfrac{2}{x-2}\) max

=>x-2=1

=>x=3(nhận)

31 tháng 3 2022

B

31 tháng 3 2022

B