K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

sai đề câu b rùi tìm x mới đúng

a) 

Điều Kiện :  \(x>0;x\ne1\)

b)

\(M=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\times\frac{\sqrt{x}+1}{\sqrt{x}}\)

Rút Gọn Được

\(M=\frac{2}{x-1}\)

Để M Là Số Nguyên \(\Rightarrow x-1\in U\left(2\right)\Leftrightarrow\left(-1;1;-2;2\right)\)

\(\cdot x-1=-1\Leftrightarrow x=0\left(nhan\right)\)

\(\cdot x-1=1\Leftrightarrow x=2\left(nhan\right)\)

\(\cdot x-1=-2\Leftrightarrow x=-1\left(loai\right)\)  ( Vì Điều Kiện Ở Câu A Là x>0 và x khác 1)

\(\cdot x-1=2\Leftrightarrow x=3\left(nhan\right)\)

vậy để M nguyên thì x ={-1;1;2}

20 tháng 7 2017

Cảm ơn ạ..

24 tháng 7 2017

a, dk \(x\ge0.x\ne1\)

\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)

 =\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)

phan b,c ban tu lam not nhe dai lam mk ko lam dau  mk co vc ban rui

a) Để giá trị của biểu thức \(\frac{x}{x^2-4}+\sqrt{x-2}\)xác định được thì

\(\left\{{}\begin{matrix}x^2-4\ne0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\notin\left\{2;-2\right\}\\x\ge2\end{matrix}\right.\Leftrightarrow x>2\)

b) Để giá trị của biểu thức \(\frac{\sqrt{x}}{\left|x\right|-1}\) xác định được thì

\(\left\{{}\begin{matrix}x\ge0\\\left|x\right|-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left|x\right|\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\notin\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow0\le x\ne1\)

1 tháng 8 2020

a) ĐK x>2

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Lời giải:

a) Để $M$ xác định thì: \(x\geq 0\)

b) Ta có:

\(M=\frac{\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}+1}:\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}}{(\sqrt{x}+1)^2}\right)\)

\(=\frac{(\sqrt{x}-1)^2}{\sqrt{x}+1}:\frac{\sqrt{x}+1-2\sqrt{x}}{(\sqrt{x}+1)^2}=\frac{(\sqrt{x}-1)^2}{\sqrt{x}+1}:\frac{1-\sqrt{x}}{(\sqrt{x}+1)^2}\)

\(=\frac{(1-\sqrt{x})^2}{\sqrt{x}+1}.\frac{(\sqrt{x}+1)^2}{1-\sqrt{x}}=(1-\sqrt{x})(1+\sqrt{x})=1-x\)