Tìm x biết
(X+1)2=25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A\left(x\right)=x^2-10x+25\)
\(\Rightarrow A\left(x\right)=\left(x-5\right)^2\)
\(\Rightarrow\left\{{}\begin{matrix}A\left(0\right)=\left(0-5\right)^2=25\\A\left(-1\right)=\left(-1-5\right)^2=36\end{matrix}\right.\)
b) \(A\left(x\right)+B\left(x\right)=6x^2-5x+25\)
\(\Rightarrow B\left(x\right)=6x^2-5x+25-A\left(x\right)\)
\(\Rightarrow B\left(x\right)=6x^2-5x+25-\left(x^2-10x+25\right)\)
\(\Rightarrow B\left(x\right)=6x^2-5x+25-x^2+10x-25\)
\(\Rightarrow B\left(x\right)=5x^2+5x\)
\(\Rightarrow B\left(x\right)=5x\left(x+1\right)\)
c) \(A\left(x\right)=\left(x-5\right)C\left(x\right)\)
\(\Rightarrow C\left(x\right)=\dfrac{\left(x-5\right)^2}{x-5}=x-5\left(x\ne5\right)\)
d) Nghiệm của B(x)
\(\Leftrightarrow B=0\)
\(\Leftrightarrow5x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) là nghiệm của B(x)
xem lại đề hộ mk nhé
mk sửa đề thế này
x+ ( x+1)+(x+2)+....+(x+24)+(x+25) = 25
=> x+ x+1 + x + 2 +...+ x+ 24 + x + 25 = 25
=> 25x + 325 = 25
từ đây tính ra x
a) \(7x\left(x+1\right)-3\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(7x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\7x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{7}\end{matrix}\right.\)
b) 3(x + 8) - x2 - 8x = 0
=> 3(x + 8) - (x2 + 8x) = 0
=> 3(x + 8) - x(x + 8) = 0
=> (x + 8)(3 - x) = 0 => \(\left[{}\begin{matrix}x+8=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-8\\x=3\end{matrix}\right.\)
c) \(x^2-10x=-25\Rightarrow x^2-10x+25=0\Rightarrow\left(x-5\right)^2=0\Rightarrow x=5\)
d) Giống câu c
a) 7x(x+1)−3(x+1)=0⇒(x+1)(7x−3)=07x(x+1)−3(x+1)=0⇒(x+1)(7x−3)=0
⇒[x+1=07x+3=0⇒⎡⎣x=−1x=−37⇒[x+1=07x+3=0⇒[x=−1x=−37
b) 3(x + 8) - x2 - 8x = 0
=> 3(x + 8) - (x2 + 8x) = 0
=> 3(x + 8) - x(x + 8) = 0
=> (x + 8)(3 - x) = 0 => [x+8=03−x=0⇒[x=−8x=3[x+8=03−x=0⇒[x=−8x=3
c) x2−10x=−25⇒x2−10x+
\(3\left(x-1\right)^2+\left(x+5\right)\left(2-3x\right)=-25\)
\(\Leftrightarrow3x^2-6x+3-3x^2-13x+10=-25\)
\(\Leftrightarrow-19x=-38\Leftrightarrow x=2\)
\(\Rightarrow3x^2-6x+3+2x-3x^2+10-15x=-25\\ \Rightarrow-19x=-38\\ \Rightarrow x=2\)
a: =>5(x+2)=170
=>x+2=34
=>x=32
b: =>x+2=5 hoặc x+2=-5
=>x=-7 hoặc x=3
c: =>x-2=1 hoặc x-2=-1
=>x=1 hoặc x=3
\(3\left(x-2\right)+4\left(x-1\right)=25\)
\(\Leftrightarrow3x-6+4x-4=25\)
\(\Leftrightarrow7x=35\)
\(\Leftrightarrow x=5\)
\(\left(5x-3\right)\left(x-2\right)=\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow\left(5x-3\right)\left(x-2\right)-\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5x-3-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{2}\end{matrix}\right.\)
(\(x\) + 1)2 = \(\dfrac{4}{25}\)
(\(x+1\))2 = (\(\dfrac{2}{5}\))2
\(\left[{}\begin{matrix}x+1=-\dfrac{2}{5}\\x+1=\dfrac{2}{5}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{2}{5}-1\\x=-\dfrac{2}{5}-1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=-\dfrac{7}{5}\end{matrix}\right.\)
Vậy \(x\in\){ \(-\dfrac{7}{5}\) ; - \(\dfrac{3}{5}\)}
`@` `\text {Ans}`
`\downarrow`
`(x+1)^2 = 4/25`
`=> (x+1)^2 = (+-2/5)^2`
`=>`\(\left[{}\begin{matrix}x+1=\dfrac{2}{5}\\x+1=-\dfrac{2}{5}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{2}{5}-1\\x=-\dfrac{2}{5}-1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=-\dfrac{7}{5}\end{matrix}\right.\)
Vậy, `x \in {-3/5; -7/5}.`
x + 25%x = \(\frac{1}{2}\)
x.1+\(\frac{1}{4}\)x = \(\frac{1}{2}\)
x.(\(1+\frac{1}{4}\)) = \(\frac{1}{2}\)
x . \(\frac{5}{4}\)= \(\frac{1}{2}\)
x = \(\frac{1}{2}\div\frac{5}{4}\)
x = \(\frac{2}{5}\)
Ta có : \(X+25\%.X=\frac{1}{2}\Leftrightarrow X+\frac{1}{4}.X=\frac{1}{2}\Leftrightarrow X.\left(1+\frac{1}{4}\right)=\frac{1}{2}\)\(\Leftrightarrow X.\frac{5}{4}=\frac{1}{2}\Leftrightarrow X=\frac{1}{2}:\frac{5}{4}\Leftrightarrow X=\frac{2}{5}\)
a/
\(x^2=25\Leftrightarrow x=\pm5\)
b/
\(x^2-1=15\\\Leftrightarrow x^2=16\Leftrightarrow x=\pm4\)
c/
\(19-2x^2=1\Leftrightarrow2x^2=18\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
`@` `\text {Ans}`
`\downarrow`
`a,`
`x^2 = 25`
`=> x^2 = (+-5)^2`
`=> x = +-5`
Vậy, `x \in {5; -5}`
`b,`
`x^2 - 1 = 15`
`=> x^2 = 15+1`
`=> x^2 = 16`
`=> x^2 = (+-4)^2`
`=> x = +-4`
Vậy, `x \in {4; -4}`
`c,`
`19 - 2x^2 = 1`
`=> 2x^2 = 19 - 1`
`=> 2x^2 = 18`
`=> x^2 = 18 \div 2`
`=> x^2 = 9`
`=> x^2 = (+-3)^2`
`=> x = +-3`
Vậy, `x \in {3; -3}.`
\(\left(x+1\right)^2=25\)
\(\Rightarrow\left(x+1\right)^2=\left(\pm5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+1=5\\x+1=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5-1\\x=-5-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-6\end{matrix}\right.\)
\(\left(x+1\right)\cdot2=25\)
\(2x+2=25\)
\(2x=25-2=23\)
\(x=23:2=11,5\)