K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

A=x4+3x2+2

Ta có :

\(x^4\ge0\forall x\) và \(3x^2\ge0\forall x\Rightarrow x^4+3x^2\ge0\forall x\)

\(\Rightarrow A=x^4+3x^2+2\ge2\forall x\) . Có GTNN là 2 khi x = 0

Vậy AMin = 2 <=> x = 0

B = (x4+5)2

Ta có : 

\(x^4\ge0\forall x\Leftrightarrow x^4+5\ge5\forall x\)

\(\Rightarrow B=\left(x^4+5\right)^2\ge5^2=25\forall x\) . Có GTNN là 25 khi tại x = 0

Vậy BMin = 25 <=> x = 0

C=(x-1)2+(y+2)2

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\) nên C = \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\) . Có GTNN là 0 tại \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy CMin = = <=> x=1 , y=-2

18 tháng 7 2017

ta có x^2, x^4 \(\ge\)0. lũy thừa với số mũ chẵn là số không âm
A = x^4 + 3x^2+2 \(\ge\)0 + 3.0+2 =2. Vậy GTNN là 2 khi x = 0
B = (x^4 + 5)^2 \(\ge\)(0+5)^2=5^2=25. Vậy GTNN của B là 25 khi x=0

Ta có (x-1)^2\(\ge\)0 và (y+2)^2 \(\ge\)0

C= (x-1)^2 + (y+2)^2 \(\ge\)0 + 0 = 0.

Vậy GTNN của C là 0

khi x-1=0 hay x=1

  và y+2=0 hay hay y=-2 

22 tháng 9 2018

(8x−3)(3x+2)−(4x+7)(x+4)=(2x+1)(5x−1)(8x−3)(3x+2)−(4x+7)(x+4)=(2x+1)(5x−1)

 20x2−16x−34=10x2+3x−120x2−16x−34=10x2+3x−1

 10x2−19x−33=010x2−19x−33=0

 (10x+11)(x−3)=0

chỉ bt lm con b thoy

..army,,,,,,,,,,

22 tháng 9 2018

a) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)

\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)

\(\Leftrightarrow3x^2-12x=3x^2-17x+20+2\)

\(\Leftrightarrow3x^2-12x=3x^2-17x+22\left(3x^2-17x\right)\)

\(\Leftrightarrow5x=22\)

\(\Rightarrow x=\frac{22}{5}\)

b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)

\(\Leftrightarrow20x^2-16x-34=10x^2+3x+1\)

\(\Leftrightarrow20x^2-16x-33=10x^2+3x\)

\(\Leftrightarrow20x^2-16x-33=10x^2+3x-3x\)

\(\Leftrightarrow20x^2-16x-33=10x^2\)

\(\Leftrightarrow20x^2-16x-33=10x^2-10x^2\)

\(\Leftrightarrow20x^2-16x-33=0\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{11}{10}\end{cases}}\)

24 tháng 9 2017

Mk ko biết  kb nha 

b: \(B\ge2021\forall x,y\)

Dấu '=' xảy ra khi x=y=3

8 tháng 9 2016

Ta có:

\(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\)

\(\frac{xy}{4y}-\frac{4}{4y}=\frac{1}{2}\)

\(\frac{xy-4}{4y}=\frac{1}{2}\)

      \(2.\left(xy-4\right)=4y\)

      \(2xy-8-4y=0\)

       \(2xy-2-4-4y=0\)

        \(2.\left(xy+1\right)-4.\left(y+1\right)=0\)

        \(2.\left(xy+1\right)-2.2.\left(y+1\right)=0\)

        \(2.\left[\left(xy+1\right)-2.\left(y+1\right)\right]=0\)

        \(xy+1-2y-2=0\)

        \(y.\left(x-2\right)=1\)

Ta có:1=1.1=(-1).(-1)

     Do đó ta có bảng sau:

y1-1
x-21-1
x31

          Vậy cặp (x;y) TM là:(3;1)(1;-1)

       

 

8 tháng 9 2016

Theo đầu bài ta có:
\(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\)
\(\Rightarrow\frac{xy-4}{4y}=\frac{1}{2}\)
\(\Rightarrow2\left(xy-4\right)=4y\)
\(\Rightarrow xy-4=2y\)
\(\Rightarrow xy-2y=4\)
\(\Rightarrow y\left(x-2\right)=4\)
Từ đó ta có bảng sau:

y-4-114
x - 2-1-441
x1-263
26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

28 tháng 8 2017

1/ \(x^3+2=3\sqrt[3]{3x-2}\)

Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ

\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)

Lấy trên - dưới ta được

\(x^3-a^3+3x-3a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)

\(\Leftrightarrow x=a\)

\(\Leftrightarrow x=\sqrt[3]{3x-2}\)

\(\Leftrightarrow x^3-3x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

2 tháng 4 2016

x2+y2=0

2 tháng 4 2016

Các bn giải hộ mk với! mK đag cần gấp