bài 1 : so sánh các số sau
81 mũ 12 và 27 mũ 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Viết các tổng sau thành bình phương của 1 số tự nhiên
A. 5 3 + 62 + 8
B . 2 + 32+ 42 + 132
Bài 2 : So sánh các số sau
A . 320 và 274
Ta có : 274 = (32)4 = 38
Vì 20 < 8 => 320 > 274
( Những câu còn lại tương tự ) - Tự làm nhé ! Mình bận ~
# Dương
a) Ta có :
\(27^{27}>27^{26}=\left(27^2\right)^{13}=729^{13}>243^{13}\)
\(\Rightarrow27^{27}>243^{13}\)
\(\Rightarrow-27^{27}< -243^{13}\)
\(\Rightarrow\left(-27\right)^{27}< \left(-243\right)^{13}\)
b) \(\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{8}\right)^{26}=\left(\dfrac{1}{8^2}\right)^{13}=\left(\dfrac{1}{64}\right)^{13}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(-\dfrac{1}{8}\right)^{25}< \left(-\dfrac{1}{128}\right)^{13}\)
c) \(4^{50}=\left(4^5\right)^{10}=1024^{10}\)
\(8^{30}=\left(8^3\right)^{10}=512^{10}< 1024^{10}\)
\(\Rightarrow4^{50}>8^{30}\)
d) \(\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{9}\right)^{12}< \left(\dfrac{1}{27}\right)^{12}\)
\(\Rightarrow\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{27}\right)^{12}\)
a) Ta có :
2727>2726=(272)13=72913>243132727>2726=(272)13=72913>24313
⇒2727>24313⇒2727>24313
⇒−2727<−24313⇒−2727<−24313
⇒(−27)27<(−243)13⇒(−27)27<(−243)13
b) (18)25>(18)26=(182)13=(164)13>(1128)13(81)25>(81)26=(821)13=(641)13>(1281)13
⇒(18)25>(1128)13⇒(81)25>(1281)13
⇒(−18)25<(−1128)13⇒(−81)25<(−1281)13
c) 450=(45)10=102410450=(45)10=102410
830=(83)10=51210<102410830=(83)10=51210<102410
⇒450>830⇒450>830
d) (19)17<(19)12<(127)12(91)17<(91)12<(271)12
⇒(19)17<(127)12⇒(91)17<(271)12
a,
15^12=(3*5)^12=3^12*5^12
81^3*125^5=(3^4)^3*(5^3)^5=3^12*5^15
Vì 12<15 suy ra 5^12<5^15
Suy ra 3^12*5^12<3^12*5^15
\(a.81^3.125^5=\left(3^4\right)^3.\left(5^3\right)^5=3^{12}.5^{15}=3^{12}.5^{12}.5^3=\left(3.5\right)^{12}.5^3=15^{12}.5^3>15^{12}\)
\(b.4^{20}.81^{12}=\left(2^2\right)^{20}.\left(9^2\right)^{12}=2^{40}.9^{24}=2^{20}.2^{20}.9^{20}.9^4=\left(2.9\right)^{20}.2^{20}.9^4=18^{20}.2^{20}.9^4>18^{20}\)
\(c.73^{75}=\left(73^3\right)^{25}=389017^{25}\)
\(107^{50}=107^{2.50}=\left(107^2\right)^{25}=11449^{25}\)
Vì \(389017^{25}>11449^{25}\Rightarrow73^{75}>107^{50}\)
a) 2711 và 818
\(27^{11}=\left(3^3\right)^{11}=3^{3.11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{4.8}=3^{32}\)
Vì 333 > 332 ⇒ 2711 >818
b) 523 và 6 . 522
\(5^{23}=5^{22}.5\)
Vì 522 . 5 < 6 . 522 ⇒ 523 < 6 . 522
1/ a) \(2.3.12.12.3=2.3.2^2.3.2^2.3.3=2^5.3^4\)
b) \(3.5.27.125=3.5.3^3.5^3=3^4.5^4=\left(3.5\right)^4\)
2/ a) \(\left(27^3\right)^4=27^{3.4}=27^{12}\)
Vậy \(\left(27^3\right)^4=27^{12}\)
b) \(5^{36}=\left(5^6\right)^6\) và \(11^{24}=\left(11^4\right)^6\)
Do đó \(5^6=15625\) và \(11^4=14641\)
Vì 15625>14641 nên\(\left(5^6\right)^6>\left(11^4\right)^6hay5^{36}>11^{24}.\)
3/ a) \(x^3=125=>x=5\)
b) \(\left(3x-14\right)^3=2^5.5^2+200\)
\(\left(3x-14\right)^3=1000\)
\(3x-14=10^3\)
\(3x=10^3+14\)
\(3x=1014\)
\(x=\frac{1014}{3}=338\)
c) \(\left(2x-1\right)^4=81\)
\(\left(2x-1\right)^4=3^4\)
\(2x-1=3\)
\(2x=3+1\)
\(x=\frac{4}{2}=2\)
d) \(5x+3^4=2^2.7^2\)
\(5x+3^4=\left(2.7\right)^2=14^2\)
\(5x+81=196\)
\(5x=196-81\)
\(5x=115\)
\(x=\frac{115}{5}=23\)
e) \(4^x=1024=>x=5\).
a/ \(27^{11}=\left(3^3\right)^{11}=3^{33}\); \(81^8=\left(3^4\right)^8=3^{32}< 3^{33}\Rightarrow81^8< 27^{11}\)
b/ \(3^{2n}=\left(3^2\right)^n=9^n\); \(2^{3n}=\left(2^3\right)^n=8^n< 9^n\Rightarrow2^{3n}< 3^{2n}\)
a. 2711= (33)11 = 333
818 = (34)8 = 332
Suy ra 333>332 hay 2711>818
b. 32n = (32)n = 9n
23n = (23)n = 8n
Mà 9>8 suy ra 9n>8n hay 32n>23n
c. 523 = 522 . 5
(6.5)22 = 622 . 522
Vì 622>5 suy ra 522 . 5<622 . 522 hay 523<(6.5)22
d. 7245-7244 = 7244(72-1) = 7244 . 71
7244-7243 = 7243(72-1) = 7243 . 71
Vì 7244>7243 suy ra 7244 . 71>7243 . 71 hay 7245-7244>7244-7243
\(\left(\dfrac{1}{27}\right)^{10}=\dfrac{1}{27^{10}}=\dfrac{1}{\left(3^3\right)^{10}}=\dfrac{1}{3^{30}}\)
\(\left(\dfrac{1}{81}\right)^7=\dfrac{1}{81^7}=\dfrac{1}{\left(3^4\right)^7}=\dfrac{1}{3^{28}}\)
Do \(3^{30}>3^{28}\Leftrightarrow\dfrac{1}{3^{30}}< \dfrac{1}{3^{28}}\)
\(\Leftrightarrow\left(\dfrac{1}{27}\right)^{10}< \left(\dfrac{1}{81}\right)^7\)
Ta có:
\(\left(\dfrac{1}{27}\right)^{10}=\left(\dfrac{1}{3^3}\right)^{10}=\left(\dfrac{1}{3}\right)^{30}\)
\(\left(\dfrac{1}{81}\right)^7=\left(\dfrac{1}{3^5}\right)^7=\left(\dfrac{1}{3}\right)^{35}\)
Vì \(\left(\dfrac{1}{3}\right)^{35}>\left(\dfrac{1}{3}\right)^{30}\)
⇒\(\left(\dfrac{1}{27}\right)^{10}< \left(\dfrac{1}{81}\right)^7\)
ta có:
\(81^{12}=\left(3^4\right)^{12}=3^{38}\)
\(27^{13}=\left(3^3\right)^{13}=3^{39}\)
vì \(38< 39=>3^{38}< 3^{39}=>81^{12}< 27^{13}\)
vậy \(81^{12}< 27^{13}\)
81^12=3^(4.12)=3^48
27^13=3^(3.13)=3^39
Có 3^48>3^39 nên 81^12>27^13