K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2023

\(\dfrac{5}{4\times7}+\dfrac{5}{7\times10}+....+\dfrac{5}{25\times28}+\dfrac{5}{28\times31}\)

\(=5\times\left(\dfrac{1}{4\times7}+\dfrac{1}{7\times10}+...+\dfrac{1}{28\times31}\right)\)

\(=\dfrac{5}{3}\times\left(\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+....+\dfrac{3}{28\times31}\right)\)

\(=\dfrac{5}{3}\times\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{28}-\dfrac{1}{31}\right)\)

\(=\dfrac{5}{3}\times\left(\dfrac{1}{4}-\dfrac{1}{31}\right)\)

\(=\dfrac{5}{3}\times\dfrac{27}{124}\)

\(=\dfrac{45}{124}\)

`#3107`

\(\dfrac{5}{4\times7}+\dfrac{5}{7\times10}+...+\dfrac{5}{25\times28}+\dfrac{5}{28\times31}\)

\(=\dfrac{5}{3}\times\left(\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+...+\dfrac{3}{25\times28}+\dfrac{3}{28\times31}\right)\)

\(=\dfrac{5}{3}\times\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{28}-\dfrac{1}{31}\right)\\ =\dfrac{5}{3}\times\left(\dfrac{1}{4}-\dfrac{1}{31}\right)\\ =\dfrac{5}{3}\times\dfrac{27}{124}\\ =\dfrac{45}{124}\)

24 tháng 9 2023

\(A=\dfrac{5}{4x7}+\dfrac{5}{7x10}+...+\dfrac{5}{25x28}+\dfrac{5}{28x31}\)

\(\dfrac{3}{5}A=\dfrac{7-4}{4x7}+\dfrac{10-7}{7x10}+...+\dfrac{28-25}{25x28}+\dfrac{31-28}{28x31}\)

\(\dfrac{3}{5}A=\dfrac{7}{4x7}-\dfrac{4}{4x7}+\dfrac{10}{7x10}-\dfrac{7}{7x10}+...+\dfrac{28}{25x28}-\dfrac{25}{25x28}+\dfrac{31}{28x31}-\dfrac{28}{28x31}\)

\(\dfrac{3}{5}A=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}+\dfrac{1}{28}-\dfrac{1}{31}\)

\(\dfrac{3}{5}A=\dfrac{1}{4}-\dfrac{1}{31}=\dfrac{27}{124}\)

\(A=\dfrac{27}{124}:\dfrac{3}{5}=\dfrac{27}{124}x\dfrac{5}{3}=\dfrac{45}{124}\)

21 tháng 8 2015

\(a,\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{43.45}=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{43.45}\right)=\frac{5}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{45}\right)=\frac{5}{3}.\frac{44}{45}=\frac{44}{27}\)

18 tháng 7 2019

Ta có:

A = \(\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{301.304}\)

A = 5. (\(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{301.304}\))

3A = 3.5. (\(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{301.304}\))

3A = 5. (\(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{301.304}\))

3A = 5. ( \(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-...-\frac{1}{301}+\frac{1}{301}-\frac{1}{304}\))

3A = 5. ( \(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-...-\frac{1}{301}+\frac{1}{301}-\frac{1}{304}\))

3A = 5. ( \(\frac{1}{4}-\frac{1}{304}\))

3A = \(\frac{5.75}{304}\)

3A = \(\frac{375}{304}\)

A= \(\frac{125}{304}\) . Vậy: A = \(\frac{125}{304}\)

heheChúc bạn học tốt!leuleu Tick cho mình nhé!eoeo

AH
Akai Haruma
Giáo viên
6 tháng 12 2023

Bài 1:

$M=3.4.5+4.5.6+...+13.14.15$

$4M=3.4.5(6-2)+4.5.6(7-3)+....+13.14.15(16-12)$

$=-2.3.4.5+3.4.5.6-3.4.5.6+4.5.6.7+....-12.13.14.15+13.14.15.16$

$=-2.3.4.5+13.14.15.16=43560$

$M=43560:4=10890$

AH
Akai Haruma
Giáo viên
6 tháng 12 2023

Bài 2:

a.

$3M=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}$

$=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{100-97}{97.100}$

$=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}$

$=1-\frac{1}{100}=\frac{99}{100}$

$M=\frac{99}{100}:3=\frac{33}{100}$

18 tháng 7 2019

\(=\frac{5}{3}.\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{301.304}\right)\)

\(=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{304}\right)\)

\(=\frac{5}{3}.\frac{75}{304}\)

\(=\frac{125}{304}\)

\(\frac{5}{4×7}+\frac{5}{7×10}+\frac{5}{10×13}+...+\frac{5}{301×304}\)

\(=\frac{5}{4}-\frac{5}{7}+\frac{5}{7}-\frac{5}{10}+\frac{5}{10}-\frac{5}{13}+...+\frac{5}{301}-\frac{5}{304}\)

\(=\frac{5}{4}-\frac{5}{304}\)

\(=\frac{380}{304}-\frac{5}{304}\)

\(=\frac{375}{304}\)

Cbht

26 tháng 6 2023

Em cần phần nào nhỉ .

26 tháng 6 2023

A = \(\dfrac{5}{1.6}\)+\(\dfrac{5}{6.11}\)+\(\dfrac{5}{11.16}\)+\(\dfrac{5}{16.21}\)+...+\(\dfrac{5}{101.106}\)

A = \(\dfrac{1}{1}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\)

A = \(\dfrac{1}{1}\) - \(\dfrac{1}{106}\)

A = \(\dfrac{105}{106}\)

B = \(\dfrac{3}{1.4}\) +\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{97.100}\)

B = \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\)

B = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)

B = \(\dfrac{99}{100}\)

C = \(\dfrac{1}{2.7}+\dfrac{1}{7.12}\) + \(\dfrac{1}{12.17}\)+...+ \(\dfrac{1}{97.102}\)

C= \(\dfrac{1}{5}\) \(\times\)\(\dfrac{5}{2.7}+\dfrac{5}{7.12}+\dfrac{5}{12.17}+...+\dfrac{5}{97.102}\))

C = \(\dfrac{1}{5}\)\(\times\)(\(\dfrac{1}{2}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{12}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{17}\)+...+ \(\dfrac{1}{97}\) - \(\dfrac{1}{102}\))

C = \(\dfrac{1}{5}\) \(\times\)\(\dfrac{1}{2}\) - \(\dfrac{1}{102}\))

C = \(\dfrac{1}{5}\) \(\times\) \(\dfrac{25}{51}\)

C = \(\dfrac{5}{51}\) 

D = \(\dfrac{1}{2}\) +   \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)

D = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+\(\dfrac{1}{7.8}\)\(\dfrac{1}{8.9}\)

D = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)

D = \(\dfrac{1}{1}\) - \(\dfrac{1}{9}\)

D = \(\dfrac{8}{9}\)

E = \(\dfrac{3}{2.4}\)+\(\dfrac{3}{4.6}\)+\(\dfrac{3}{6.8}\)+...+\(\dfrac{3}{98.100}\)

E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{2}{2.4}\) + \(\dfrac{2}{4.6}\)\(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{98.100}\))

E = \(\dfrac{3}{2}\)\(\times\)\(\dfrac{1}{2}\) - \(\dfrac{1}{4}\)\(\dfrac{1}{4}\) - \(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\) - \(\dfrac{1}{100}\))

E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{100}\))

E = \(\dfrac{3}{2}\) \(\times\) \(\dfrac{49}{100}\)

E = \(\dfrac{147}{200}\)

=1/1-1/4+1/4-1/7+1/7-1/10+1/10-1/13+1/13-1/16

=1-1/16=15/16