choa+b+c=0
chung minh rang a^3+b^3+c^3=3abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a + b + c = 0
=> a+b=-c
a3 + b3 +c3 = a^3 + b^3 +3a^2b +3ab^2 -3a^2b-3ab^2 +c^3
= (a+b)^3 -3ab(a+b)+c^3
= -c^3 +3abc+c^3
= 3abc
=> a^3+b^3+c^3 = 3abc
https://olm.vn/hoi-dap/detail/48946023107.html vào trang đó coi rồi
ta có a+b+c=0 => a+b=-c => a^2 +b^2 =c^2-2ab
tương tự a^2 + c^2 =b^2-2ac
b^2 + c^2 =a^2-2bc
thế cào A= -1/2ab + -1/2ac + -1/2bc = -(c+a+b)/2abc=0 (vì a+b+c=0 )
ta có:a^3+b^3+c^3=3abc
<=>(a+b)^3+c^3-3ab(a+b)-3abc=0
<=>(a+b+c)[(a+b)^2+(a+b)c+c^2]-3ab(a+b...
<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0
<=>1/2(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]...
do a,b,c doi mot khac nhau nen PT<=>a+b+c=0(DPCM)
lộn nha không phải cái trang đó đâu cái này này
Xét hiệu: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)\(=0\) (do a+b+c = 0)
\(\Rightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\)\(a^3+b^3+c^3=3abc\) (đpcm)
Xét TS
Có a^3 + b^3 + c^3 - 3abc = a^3 + 3a^2b + 3ab^2 + b^2 + c^3 - 3abc - 3a^2b - 3ab^2 = (a + b)^3 + c^3 - 3ab(a + b + c) = (a + b + c)( (a+b)^2 + (a + b)c + c^2 - 3abc) = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac)
Rút gọn TS/MS được kết quả = a + b + c = 2009 => điều phải chứng minh
ta có:
A+B=(a+b-5)+(-b-c+1)
=a+b-5-b-c+1
=a-c+(b-b)-(5-1)
=a-c-4 (1)
Lại có:
C-D=(b-c-4)-(b-a)
=b-c-4-b+a
=(b-b)+a-c-4
=a-c-4 (2)
Từ (1) và (2)=>A+B=C-D (vì cùng bằng a-c-4)
Từ \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
ĐÚng với a+b+c=0