Tìm số tự nhiên nhỏ nhất biết rằng số đó khi chia cho 3,4,5, 6 đều có số dư là 2 còn khi chi cho 7 thì có số dư là 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi a là số tự nhiên
a : 3 dư 2
a : 4 dư 2
a : 5 dư 2
a : 6 dư 2
nên a - 2 \(⋮\)3 ; 4 ; 5 ; 6 ; a - 2 : 7 dư 1
a - 2 \(\in\)BC { 3 ; 4 ; 5 ; 6 }
BCNN { 3 ; 4 ; 5 ; 6 } = 3 . 22 . 5 = 60
BC { 3 ; 4 ; 5 ; 6 } = B { 60 } = { 0 ; 60 ; 120 ; 180 ; ... }
mà a nhỏ nhất nên a -2 = 120
vậy a = 122
Gọi số tự nhiên cần tìm là a . Ta có :
a chia 3 dư 2 ; a chia 4 dư 2 ; a chia 5 dư 2 ; a chia 6 dư 2 nên :
a - 2 \(⋮\) 3 , 4 , 5 , 6 ; a - 2 chia 7 dư 1
a - 2 \(\in\) BC { 3 ; 4 ; 5 ; 6 }
BCNN { 3 ; 4 ; 5 ; 6 = 3 . 22 . 5 = 60
BC { 3 ; 4 ; 5 ; 6; } = B ( 60 ) = { 0 ; 60 ; 120 ; 180 ; ...... } . Mà a nhỏ nhất nên a - 2 = 120
\(\Rightarrow\)a = 120
Lời giải:
Gọi số tự nhiên thỏa mãn đề là $n$. Vì số đó chia $3,4,5,6$ đều dư $2$ nên số đó sẽ có dạng
$n=BCNN(3,4,5,6).k+2$ với $k$ tự nhiên
$n=60k+2$
$n$ chia $7$ dư $3$ nghĩa là $n-3\vdots 7$
$\Leftrightarrow 60k-1\vdots 7$
$\Leftrightarrow 63k-(60k-1)\vdots 7$
$\Leftrightarrow 3k+1\vdots 7$
$\Leftrightarrow 3k-6\vdots 7$
$\Leftrightarrow k-2\vdots 7$ nên $k=7t+2$ với $t$ tự nhiên.
Thay vô $n$ thì $n=60k+2=60(7t+2)+2=420t+122$
Vì $t\geq 0$ nên $n\geq 122$
Vậy số tự nhiên nhỏ nhất thỏa đề là $122$
goi so do la a
suy ra (a-2)chia het cho 3;4;5;6 (a-2) la BC(3;4;5;6)
vay (a-2)thuoc (0;60;120;...)
vay a thuoc (2;62;122;...)
ma 122 chia 7 du 3 vay so can tim la 122
nha
gọi STN đó là a. Ta có:
a-2 chia hết cho 3;4;5;6
a-2 thuộc BC(3,4,5,6)
BCNN(3,4,5,6)=60
a={62;122;...}
vì a nhỏ nhất , a chia 7 dư 3 nên a=122
Giải
Gọi số cần tìm là x.
x chia 3 dư 2 => x - 2 ⋮ 3
x chia 4 dư 2 => x - 2 ⋮ 4
x chia 5 dư 2 => x - 2 ⋮ 5
x chia 6 dư 2 => x - 2 ⋮ 6
⇒x - 2 ∈ BCNN(3;4;5;6)
Ta có : 3 = 3 4 = 22 5 = 5 6 = 2.3
⇒BCNN(3;4;5;6) = 22 .3.5 = 60
mà B(60) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; 420 ; 480 ; ... }
⇒BC(3;4;5;6) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; 420 ; 480 ; ... }
Nếu x - 2 = 0 => ( loại )
Nếu x - 2 = 60 => x = 60 - 2 = 58 ( loại )
Nếu x - 2 = 120 => x = 120 + 2 = 122 ( nhận )
Vì x phải nhỏ nhất nên x = 122
Vậy số tự nhiên nhỏ nhất cần tìm đó là: 122
gọi số đó là a
vì a chia 3,4,5,6 đều dư 12
=>(a-12) chia hết 3,4,5,6
=>(a-12) thuộc BC(3,4,5,6)
3=3 ; 4=2^2 ; 5=5 ; 6=2*3
BCNN(3,4,5,6) = 2^2*3*5 =60
BC(3,4,5,6)=B(60)= {0;60;120;180;...}
vì a nhỏ nhất và chia 7 dư 3 =>(a-12) -3 chia hết cho 7 và là nhỏ nhất
từ tập hợp trên => (a-12)=180 =>a=192
thế đó, nói thật nó chẳng khó gì nhưng mình có làm sai thì nhắc nhé ^-^
2, TA có:
x + y + xy = 40
=> x(y + 1) + y + 1 = 41
=> (x + 1)(y + 1) = 41
=> x + 1 thuộc Ư(41) = {1; 41}
Xét từng trường hợp rồi thay vào tìm y
Có lẽ các bạn thấy hơi dài nhưng các bạn có thể làm 1 trong 3 câu cũng được. Nhưng đừng làm sai nhé! Hihihi...