A = 2 + 22 + 23 + ... + 260
a. Xét xem A có ⋮ 3, A có ⋮ 7, A có ⋮ 5 không ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )không chia hết cho 2
b) chia hết cho 5
c) không chia hết cho 3
d ) không chia hết cho 9
(Mình chỉ làm đc bài 1 thôi nhé)
Bài 1:
A = 1 + 2 + 3 + 4 +...+999
2A= (1+999)+(2+998)+(3+997)+...+(999+1)
Ta nhận thấy các kết quả của các tổng trong ngoặc trên đều bằng 1000 (số chẵn), mà các số chia hết cho 2 là số chẵn, suy ra A chia hết cho 2
Bài 1:
a, a ϵ Ư(20) nên a ϵ {1; 2; 4; 5; 10; 20; -1; -2; -4; -5; -10; -20}.
Mà a > 4 nên a ϵ {5; 10; 20}
b, b ϵ B(5) nên b ϵ {...; -10; -5; 0; 5; 10; 15; 20; 25; 30; 35; ...}
Mà b ≤ 35 nên b ϵ {...; -10; -5; 0; 5; 10; 15; 20; 25; 30; 35}
Bài 2:
a,
30 + 45 = 75, tổng chia hết cho 15.
40 + 5 + 300 = 45 + 300. Vì mỗi số hạng chia hết cho 15 nên tổng chia hết cho 15.
b,
Vì số bị trừ chia hết cho 15 mà số trừ không chia hết cho 15 nên các hiệu 1500 - 23; 450 - 31 không chia hết cho 15.
145 + 5 - 17 = 150 - 17, số bị trừ chia hết cho 15 nhưng số trừ không chia hết cho 15 nên 145 + 5 - 17 không chia hết cho 15.
Bài 3:
a, Để A chia hết cho 6 thì x chia hết cho 6 (do các số hạng chia hết cho 6).
b, Từ câu a, suy ra để A không chia hết cho 6 thì x không chia hết cho 6.
Bài 4:
a, Tích 40.7.25 chia hết cho 8 vì 40 chia hết cho 8.
b, Tích 32.19.28 chia hết cho 8 vì 32 chia hết cho 8.
c, 4.35.2.39 = 8.35.39, tích này chia hết cho 8 vì 8 chia hết cho 8.
d, 14.27.4.15 = 56.27.15, tích này chia hết cho 8 vì 56 chia hết cho 8.
Bài 5: Tích A = 2.4.6...10.12 = (2.4.10).6.8.12 = 80.6.8.12, suy ra tích A chia hết cho 80 vì 80 chia hết cho 80.
Bài 6:
a, Tổng 2.4.6.8.10 + 310 chia hết cho 10 vì các số hạng chia hết cho 10.
b,1.2.3.4.5 + 230 = 10.3.4 + 230, tổng chia hết cho 10 vì các số hạng chia hết cho 10.
c, Xét 3.5.7.9 + 25, tổng này chia hết cho 5 vì mỗi số hạng chia hết cho 5, và tổng cũng chia hết cho 2 vì tổng này bằng tổng của 2 số lẻ. Do đó 3.5.7.9 + 25 chia hết cho 10.
Lại có 50 chia hết cho 10 nên 3.5.7.9 + 25 + 50 chia hết cho 10.
Bài 7: bỏ qua
Bài 8: Cho A= 4 + 4^2 + 4^3 + 4^4 + ...+ 4^12.Chứng minh rằng:
a, A chia hết cho 4 vì mỗi số hạng chia hết cho 4.
b,
\(A=4+4^2+...+4^{12}=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{11}+4^{12}\right)\)
\(A=4\left(1+4\right)+4^2\left(1+4\right)+...+4^{11}\left(1+4\right)=\left(4+4^2+...+4^{11}\right)5\)
Do đó A chia hết cho 5.
c,
\(A=4+4^2+...+4^{12}=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{10}+4^{11}+4^{12}\right)\)
\(A=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{10}\left(1+4+4^2\right)=\left(4+4^4+...+4^{10}\right)21\)
Do đó A chia hết cho 21.
Bài 9:
2 ⋮ x
x ϵ Ư(2) hay x ϵ {1; 2; -1; -2}, vì x là số tự nhiên nên x ϵ {1; 2}
2 ⋮ (x + 1)
(x + 1) ϵ Ư(2) hay (x + 1) ϵ {1; 2; -1; -2}
x ϵ {0; 1; -2; -3}, vì x là số tự nhiên nên x ϵ {0; 1}
2 ⋮ (x + 2)
(x + 2) ϵ Ư(2) hay (x + 2) ϵ {1; 2; -1; -2}
x ϵ {-1; 0; -3; -4}, vì x là số tự nhiên nên x ϵ {0}
2 ⋮ (x - 1)
(x - 1) ϵ Ư(2) hay (x - 1) ϵ {1; 2; -1; -2}
x ϵ {2; 3; 0; -1}, vì x là số tự nhiên nên x ϵ {2; 3; 0}
2 ⋮ (x - 2)
(x - 2) ϵ Ư(2) hay (x - 2) ϵ {1; 2; -1; -2}
x ϵ {3; 4; 1; 0}, vì x là số tự nhiên nên x ϵ {3; 4; 1; 0}
2 ⋮ (2 - x)
(2 - x) ϵ Ư(2) hay (2 - x) ϵ {1; 2; -1; -2}
x ϵ {1; 0; 3; 4}, vì x là số tự nhiên nên x ϵ {1; 0; 3; 4}
6 ⋮ x
x ϵ Ư(6) hay x ϵ {1; 2; 3; 6; -1; -2; -3; -6}, vì x là số tự nhiên nên x ϵ {1; 2; 3; 6}
6 ⋮ (x + 1)
(x + 1) ϵ Ư(6) hay (x + 1) ϵ {1; 2; 3; 6; -1; -2; -3; -6}
x ϵ {0; 1; 2; 5; -2; -3; -4; -7}, vì x là số tự nhiên nên x ϵ {0; 1; 2; 5}
6 ⋮ (x + 2)
(x + 2) ϵ Ư(6) hay (x + 2) ϵ {1; 2; 3; 6; -1; -2; -3; -6}
x ϵ {-1; 0; 1; 4; -3; -4; -5; -8}, vì x là số tự nhiên nên x ϵ {0; 1; 4}
6 ⋮ (x - 1)
(x - 1) ϵ Ư(6) hay (x - 1) ϵ {1; 2; 3; 6; -1; -2; -3; -6}
x ϵ {2; 3; 4; 5; 0; -1; -2; -5}, vì x là số tự nhiên nên x ϵ {2; 3; 4; 5; 0}
6 ⋮ (x - 2)
(x - 2) ϵ Ư(6) hay (x - 2) ϵ {1; 2; 3; 6; -1; -2; -3; -6}
x ϵ {3; 4; 5; 6; 1; 0; -1; -4}, vì x là số tự nhiên nên x ϵ {3; 4; 5; 6; 1; 0}
6 ⋮ (2 - x)
(2 - x) ϵ Ư(6) hay (2 - x) ϵ {1; 2; 3; 6; -1; -2; -3; -6}
x ϵ {1; 0; -1; -4; 3; 4; 5; 8}, vì x là số tự nhiên nên x ϵ {1; 0; 3; 4; 5; 8}
6 và 12
6 + 12 = 18 chia hết cho 6
7 và 14
7 + 14 chia hết cho 7
Nhận xét : nếu số a và b chia hết cho c thì tổng của a và b chia hết cho c
có
mình thêm ví dụ : 6 + 14 = 20 không chia hết cho 7
có chia hết cho 5 vì các số tận cùng chia hết cho 5,củng có chia hết cho 3
tổng này ko chia hết cho 3 vị 135:3,130 ko chia hết cho 3, 2115 ko chia hết cho 3
tổng này chia hết cho 5 vì135:5,130:5,2115:5
chúc bạn học giỏi tiện thể bạn có muốn kết bạn với mình ko
A ko chia hết cho 2 vì 3105 ko chia hết cho 2.
A chia hết cho 5 vì cả ba số hạng của A đều chia hết cho 5.
A ko chia hết cho 9 vì 150 ko chia hết cho 9.
Ta có:
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{59}\cdot3\)
\(A=3\cdot\left(2+2^3+2^5+...+2^{59}\right)\)
A chia hết cho 3
____
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)
\(A=2\cdot\left(1+4\right)+2^2\cdot\left(1+4\right)+...+2^{58}\cdot\left(1+4\right)\)
\(A=2\cdot5+2^2\cdot5+...+2^{58}\cdot5\)
\(A=5\cdot\left(2+2^2+...+2^{58}\right)\)
Vậy A chia hết cho 5
____
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\cdot\left(1+2+4\right)+...+2^{58}\cdot\left(1+2+4\right)\)
\(A=2\cdot7+2^4\cdot7+...+2^{58}\cdot7\)
\(A=7\cdot\left(2+2^4+...+2^{58}\right)\)
Vậy A chia hết cho 7