Cho tam giác ABC có hai đường trung tuyến AM và BN cắt nhau tại G. Khi đó
A.\(AM = 2GM\). B.\(AM = 2AG\). C.\(GA = 3GM\). D.\(GA = 2GM\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tg AGB và tg AGC có
AB=AC
AG chung
\(\widehat{BAG}=\widehat{CAG}\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao và đường phân giác của góc ở đỉnh)
=> tg AGB = tg AGC (c.g.c)
b/
\(\widehat{BAG}=\widehat{CAG}\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao và đường phân giác của góc ở đỉnh)
\(\Rightarrow AM\perp BC\)
\(CI\perp BC\)
=> GM//CI mà MB=MC => GB=GI (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)
Xét tg BCI có
MB=MC; GB=GI (cmt) => GM là đường trung bình của tg BCI
\(\Rightarrow GM=\dfrac{1}{2}CI\Rightarrow CI=2GM\)
(Tự vẽ hình)
a)
Xét ΔABC cân tại A có AM là đường trung tuyến
=> AM đồng thời là đường phân giác, đường cao của ΔABC
=> \(\left\{{}\begin{matrix}\widehat{BAG}=\widehat{CAG}\\GM\perp BC\end{matrix}\right.\)
Vì ΔABC cân tại A
=> AB = AC (Định nghĩa tam giác cân)
Xét ΔABG và ΔACG có:
AB = AC(cmt)
\(\widehat{BAG}=\widehat{CAG}\)(cmt)
AG chung
=> ΔABG = ΔACG(cgc)(đpcm)
b)
Có \(\left\{{}\begin{matrix}GM\perp BC\left(cmt\right)\\IC\perp BC\left(gt\right)\end{matrix}\right.\)
=> GM // IC
Xét ΔBIG có M là trung điểm BC
Mà GM//IC
=> GM là đường trung bình của ΔBIC
=>\(\left\{{}\begin{matrix}MG//IC\\IC=2.GM\left(dpcm\right)\end{matrix}\right.\)
c)
Có AG//IC(cmt)
=> \(\widehat{GAC}=\widehat{ICA}\)(2 góc so le trong)
Vì AM,BN là 2 đường trung tuyến của ΔABC
Mà AM cắt BN tại G
Nên G là trọng tâm ΔABC
=>AG = \(\dfrac{2}{3}\)AM
=>AG = 2.GM
Mà IC = 2.GM(cm câu b)
=> AG = IC
Xét ΔGAC và ΔICA có:
AG = IC(cmt)
\(\widehat{GAC}=\widehat{ICA}\)(cmt)
AN = NC(BN là đường trung tuyến)
=> ΔGAC = ΔICA(gcg)
=> AI = GC(2 cạnh tương ứng)
Mà ΔABG = ΔACG(cm câu a) => BG = CG
=> AI = BG(1)
Có \(\widehat{AGB}=\widehat{GBM}+\widehat{GMB}\)(góc ngoài tam giác)
=> \(\widehat{AGB}=\widehat{GBM}+90^0\)
=> \(\widehat{AGB}>90^0\)
=> Cạnh AB lớn nhất trong ΔABG
=> AB>BG(2)
Từ (1) và (2) => AB > AI
=> \(\widehat{AIB}>\widehat{ABI}\)
a) G là giao điểm của hai đường trung tuyến AM và BN nên G là trọng tâm tam giác ABC.
Suy ra: \(AG = 2GM\). Mà trên tia đối của tia MA lấy điểm D sao cho MD = MG nên \(GD = 2GM\).
Vậy GA = GD (= 2GM).
b) Xét hai tam giác MBG và MCD có:
MB = MC (M là trung điểm cạnh BC)
\(\widehat {GMB} = \widehat {DMC}\)(đối đỉnh)
GM = GD.
Vậy \(\Delta MBG = \Delta MCD\)(c.g.c).
c) \(\Delta MBG = \Delta MCD\) nên BG = CD (2 cạnh tương ứng).
Mà G là trọng tâm tam giác ABC nên \(BG = 2GN\). Mà BG = CD nên \(CD = 2GN\).
Xét ΔANG và ΔCND có
\(\widehat{GAN}=\widehat{DCN}\)
NA=NC
\(\widehat{ANG}=\widehat{CND}\)
Do đó: ΔANG=ΔCND
Suy ra: NG=ND
Xét ΔBAC có
BN là đường trung tuyến ứng với cạnh huyền AC
AM là đường trung tuyến ứng với cạnh huyền BC
BN cắt AM tại G
Do đó: G là trọng tâm của ΔBAC
Suy ra: \(BG=\dfrac{2}{3}BN\)
\(\Leftrightarrow NG=ND=\dfrac{1}{3}BN\)
\(\Leftrightarrow BG=GD\)
hay B và D đối xứng nhau qua G
Cho tam giác HPG có 3 trung tuyến HM,PA,GB cắt nhau tại T . Biết TH = 3 cm,TP=TG=4 cm a, Tính HM,PA,GB. b, Chứng minh tam giác HPG cân
mk pit làm phần a thui
vì AG=2GM
+) AG=4 cm
=>4=2GM
=> MG=4:2=2 (cm)
+)gm+ag=am
+)mg=2 cm
+) ag=9cm
=>2+9=am
=> am=11 cm
tính độ dài đoạn cp và bn tương tự như trên
Đáp án: D. \(GA = 2GM\).