K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2021

\(\left(m+1\right)\cdot x^2+5x+m^2-1=0\)

\(\Delta=5^2-4\cdot\left(m+1\right)\left(m^2-1\right)\)

\(\Delta=25-4\cdot\left(m^3-m+m^2-1\right)\)

\(\Delta=-4m^3-4m^2+4m+29\)

\(\Delta=-4m\left(m^2+m-1\right)+29\)

\(\Delta=-4m[\left(m+\dfrac{1}{2}\right)^2-\dfrac{5}{4}]+29\)

\(\Delta=-4m\left(m+\dfrac{1}{2}\right)^2+34\)

Vì \(\left(m+\dfrac{1}{2}\right)^2\ge0\) và 34>0

Nên để phương trình có 2 nghiệm phân biệt 

Thì \(-4m\ge0\)

\(m\le0\)

Vậy m≤0

a: Thay m=5 vào pt, ta được:

\(x^2+12x+25=0\)

\(\Leftrightarrow x^2+12x+36=11\)

\(\Leftrightarrow\left(x+6\right)^2=11\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{11}-6\\x=\sqrt{11}-6\end{matrix}\right.\)

b:

\(\text{Δ}=\left(2m+2\right)^2-4m^2=8m+4\)

Để phương trình có hai nghiệm phân biệt thì 8m+4>0

hay m>-1/2

Thay x=-2 vào pt, ta được:

\(4-4\left(m+1\right)+m^2=0\)

\(\Leftrightarrow m^2-4m=0\)

\(\Leftrightarrow m\left(m-4\right)=0\)

=>m=0(nhận) hoặc m=4(nhận)

25 tháng 5 2022

\(\Delta=\left(-5\right)^2-4\left(m-1\right)\)

   \(=25-4m+4\)

   \(=29-4m\)

Để pt có 2 nghiệm thì \(\Delta>0\)

                                    \(\Leftrightarrow m< \dfrac{29}{4}\)

Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m-1\end{matrix}\right.\) (1)

\(2x_2=\sqrt{x_1}\) ; \(ĐK:x_1;x_2\ge0\)

\(\Leftrightarrow4x_2^2=\left|x_1\right|\)

\(\Leftrightarrow4x_2^2=x_1\) (2)

Thế \(x_1=4x^2_2\) vào \(\left(1\right)\), ta được:

\(\left\{{}\begin{matrix}4x_2^2+x_2-5=0\\4x_2^3-m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_2=-\dfrac{5}{4}\left(ktm\right)\\x_2=1\left(tm\right)\end{matrix}\right.\\4.1^3-m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=1\\m=5\end{matrix}\right.\)

\(\left(2\right)\Rightarrow x_1=4\)

Vậy \(\left\{{}\begin{matrix}m=5\\x_1=4\\x_2=1\end{matrix}\right.\)

 

 

8 tháng 6 2018

Đáp án A

27 tháng 10 2019

Đáp án B

26 tháng 4 2017

Phương trình x 2 + (2m – 1)x + m 2 – 2m + 2 = 0

(a = 1; b = 2m – 1; c = m 2 – 2m + 2)

Ta có ∆ = ( 2 m – 1 ) 2 – 4 . ( m 2 – 2 m + 2 ) = 4 m – 7

Gọi x 1 ;   x 2 là hai nghiệm của phương trình, theo hệ thức Vi-ét ta có

Vì a = 1  0 nên phương trình có hai nghiệm âm phân biệt  ⇔ Δ > 0 P > 0 S > 0

  ⇔ 4 m − 7 > 0 1 − 2 m > 0 m 2 − 2 m + 2 > 0 ⇔ m > 7 4 m < 1 2 m − 1 2 + 1 > 0      ( l u o n    d u n g ) ⇔ m > 7 4 m < 1 2     ( v o ​​     l y )

Vậy không có giá trị nào của m thỏa mãn đề bài

Đáp án: D

23 tháng 12 2017

a, x 2 − 2 ( m + 1 ) x + m 2 + m − 1 = 0 (1)

Với m = 0, phương trình (1) trở thành:

  x 2 − 2 x − 1 = 0 Δ ' = 2  ;  x 1 , 2 = 1 ± 2

Vậy với m = 2 thì nghiệm của phương trình (1) là  x 1 , 2 = 1 ± 2

b) Δ ' = m + 2

Phương trình (1) có hai nghiệm phân biệt  ⇔ m > − 2

Áp dụng hệ thức Vi-ét, ta có:  x 1 + x 2 = 2 ( m + 1 ) x 1 x 2 = m 2 + m − 1

Do đó:

     1 x 1 + 1 x 2 = 4 ⇔ x 1 + x 2 x 1 x 2 = 4 ⇔ 2 ( m + 1 ) m 2 + m − 1 = 4 ⇔ m 2 + m − 1 ≠ 0 m + 1 = 2 ( m 2 + m − 1 ) ⇔ m 2 + m − 1 ≠ 0 2 m 2 + m − 3 = 0 ⇔ m = 1 m = − 3 2

Kết hợp với điều kiện  ⇒ m ∈ 1 ; − 3 2  là các giá trị cần tìm.

NV
22 tháng 1

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)

Phương trình luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)

\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)

\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)

\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)

\(\Leftrightarrow2m^2+2m-4=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)