Tính một cách hợp lí:
a)\(\frac{{ - 3}}{{10}} - 0,125 + \frac{{ - 7}}{{10}} + 1,125\); b)\(\frac{{ - 8}}{3}.\frac{2}{{11}} - \frac{8}{3}:\frac{{11}}{9}\);
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}\frac{4}{{15}} - \left( {2,9 - \frac{{11}}{{15}}} \right)\\ = \frac{4}{{15}} - 2,9 + \frac{{11}}{{15}}\\ = \left( {\frac{4}{{15}} + \frac{{11}}{{15}}} \right) - 2,9\\=\frac{15}{15}-2,9 \\= 1 - 2,9 = - 1,9\end{array}\)
b)
\(\begin{array}{l}( - 36,75) + \left( {\frac{{37}}{{10}} - 63,25} \right) - ( - 6,3)\\ = ( - 36,75) + 3,7 - 63,25 + 6,3\\ = \left( { - 36,75 - 63,25} \right) + \left( {3,7 + 6,3} \right)\\ = - 100 + 10 = - 90\end{array}\)
c)
\(\begin{array}{l}6,5 + \left( { - \frac{{10}}{{17}}} \right) - \left( { - \frac{7}{2}} \right) - \frac{7}{{17}}\\ = \frac{{65}}{{10}} - \frac{{10}}{{17}} + \frac{7}{2} - \frac{7}{{17}}\\ = \left( {\frac{{65}}{{10}} + \frac{7}{2}} \right) - \left( {\frac{{10}}{{17}} + \frac{7}{{17}}} \right)\\ = \left( {\frac{{65}}{{10}} + \frac{{35}}{{10}}} \right) - \frac{17}{17}\\ = \frac{100}{10}-1\\=10 - 1 = 9\end{array}\)
d)
\(\begin{array}{l}( - 39,1) \cdot \frac{{13}}{{25}} - 60,9 \cdot \frac{{13}}{{25}}\\ = \frac{{13}}{{25}}.\left( { - 39,1 - 60,9} \right)\\ = \frac{{13}}{{25}}.\left( { - 100} \right)\\ = - 52\end{array}\).
\(=\frac{\left(-1\right)^7}{3^7}.3^7+\left(\frac{1}{8}\right)^3.8^3+\left(\frac{1}{5}\right)^3.\left(2.5\right)^3\)
\(=\left(-1\right)^7+\frac{1^3}{8^3}.8^3+\frac{1^3}{5^3}.2^3.5^3\)
\(=-1+1+2^3=2^3=8\)
a)
\(\begin{array}{l}1,8 - \left( {\frac{3}{7} - 0,2} \right)\\ = 1,8 - \frac{3}{7} + 0,2\\ = \left( {1,8 + 0,2} \right) - \frac{3}{7}\\ = 2 - \frac{3}{7} =\frac{{14}}{7}-\frac{{3}}{7}= \frac{{11}}{7}\end{array}\)
b)
\(\begin{array}{l}12,5 - \frac{{16}}{{13}} + \frac{3}{{13}}\\ = 12,5 - \frac{{16}}{{13}} + \frac{3}{{13}}\\ = 12,5 + \left( { - \frac{{16}}{{13}} + \frac{3}{{13}}} \right)\\ = 12,5 + \left( { - 1} \right) = 11,5\end{array}\)
a)\(\frac{7}{3}.\left( { - 2,5} \right).\frac{6}{7} = \frac{7}{3}.\frac{6}{7}.\left( { - 2,5} \right) = 2.\left( { - 2,5} \right) = - 5\)
b)
\(\begin{array}{l}0,8.\frac{{ - 2}}{9} - \frac{4}{5}.\frac{7}{9} - 0,2\\ = \frac{4}{5}.\frac{{ - 2}}{9} - \frac{4}{5}.\frac{7}{9}-\frac{2}{10}\\ = \frac{4}{5}.\left( {\frac{{ - 2}}{9} - \frac{7}{9}} \right) -\frac{1}{5}\\ = \frac{4}{5}.\left( { - 1} \right)-\frac{1}{5} \\= \frac{{ - 4}}{5}-\frac{1}{5}\\=\frac{-5}{5}\\=-1.\end{array}\)
\(-\dfrac{3}{10}-0,125+-\dfrac{7}{10}+1,125\)
`=`\(\left(-\dfrac{7}{10}-\dfrac{3}{10}\right)+\left(-0,125+1,125\right)\)
`= -1 + 1=0`
Lời giải:
$A=(1-4)+(7-10)+(13-16)+....+(97-100)+103$
$=\underbrace{(-3)+(-3)+(-3)+...+(-3)}_{17}+103$
$=(-3).17+103=52$
a)
\(\begin{array}{l}\left( { - \frac{5}{6}} \right) - \left( { - 1,8} \right) + \left( { - \frac{1}{6}} \right) - 0,8\\ = \left( { - \frac{5}{6}} \right) + 1,8 + \left( { - \frac{1}{6}} \right) - 0,8\\ = \left[ {\left( { - \frac{5}{6}} \right) + \left( { - \frac{1}{6}} \right)} \right] + \left[ {1,8 - 0,8} \right]\\ =\frac{-6}{6}+1= - 1 + 1 = 0\end{array}\)
b)
\(\begin{array}{l}\left( { - \frac{9}{7}} \right) + \left( { - 1,23} \right) - \left( { - \frac{2}{7}} \right) - 0,77\\ = \left[ {\left( { - \frac{9}{7}} \right) - \left( { - \frac{2}{7}} \right)} \right] + \left[ {\left( { - 1,23} \right) - 0,77} \right]\\ =\frac{-7}{7}+(-2)= - 1 + \left( { - 2} \right) = - 3\end{array}\)
a) 152 + (-73) - (-18) - 127 = 152 – 73 +18 -127
= (152 + 18) – (127 + 73) = 170 - 200 = -(200 - 170) = -30
b) 7 + 8 + (-9) + (-10) = (7 + 8) + [(-9) + (-10)]
= 15 + (-19) = -(19 - 15) = -4.
a)
\(\begin{array}{l}\frac{{ - 3}}{{10}} - 0,125 + \frac{{ - 7}}{{10}} + 1,125 \\= \left( {\frac{{ - 3}}{{10}} + \frac{{ - 7}}{{10}}} \right) + \left( {1,125 - 0,125} \right)\\ = - 1 + 1 \\= 0\end{array}\)
b)
\(\begin{array}{l}\frac{{ - 8}}{3}.\frac{2}{{11}} - \frac{8}{3}:\frac{{11}}{9} \\= \frac{8}{3}.\frac{{ - 2}}{{11}} - \frac{8}{3}.\frac{9}{{11}}\\ = \frac{8}{3}.\left( {\frac{{ - 2}}{{11}} - \frac{9}{{11}}} \right)\\ =\frac{{ - 8}}{3}.\frac{-11}{11}\\= \frac{8}{3}.\left( { - 1} \right) \\= \frac{{ - 8}}{3}\end{array}\)