K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

a/ 25x+1.1252=6254

<=> (52)x+1.(53)2=(54)4

<=> 52x+2.56 = 516

<=> 52x+2=510

=> 2x+2=10 => x=4

b/ 9x=273.35

<=> 32x=39.35=314

=> 2x=14  => x=7

c/ 16x.85=647

<=> (24)x.(23)5=(26)7

<=> 24x.215=242

<=> 24x=227

=> 4x=27 => x=27/4

20 tháng 3 2019

- Chọn D

Để học tốt Toán 9 | Giải bài tập Toán 9

⇔ 5√x - 4√x = 9 ⇔ √x = 9 ⇔ x = 81

22 tháng 7 2018

- Chọn D

Để học tốt Toán 9 | Giải bài tập Toán 9

⇔ 5√x - 4√x = 9 ⇔ √x = 9 ⇔ x = 81

24 tháng 8 2017

bài 1

tìm gtng và gtln

d=-4x^2 -4x +3

c= 9x^2 +6x +2

e=25x^2 +16x +4

bài 2 cho đa thức x^4 - x^3 +6x^2 -x +a chia cho x^2 -x +5 tìm a để số dư bằng 0

botay.com.vn

24 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

18 tháng 9 2023

\(460+85\times4=\left(x+200\right)\times4\)

\(\left(x+200\right)\times4=460+340\)

\(\left(x+200\right)\times4=800\)

\(x+200=800:4\)

\(x+200=200\)

\(x=200-200\)

\(x=0\)

~~~

\(\left(x-7\right)\left(2x-8\right)=0\)

\(+, TH1: x - 7 = 0\)

\(x=0+7\)

\(x=7\)

\(+, TH2 : 2x - 8 = 0 \)

\(2x=0+8\)

\(2x=8\)

\(x=8:2\)

\(x=4\)

~~~

\(x-280:35=5\times54\)

\(x-8=270\)

\(x=270+8\)

\(x=278\)

~~~

\(324+16\times\left(2x+3\right)=404\)

\(16\times\left(2x+3\right)=404-324\)

\(16\times\left(2x+3\right)=80\)

\(2x+3=80:16\)

\(2x+3=5\)

\(2x=5-3\)

\(2x=2\)

\(x=2:2\)

\(x=1\)

#\(Toru\)

 

18 tháng 9 2023

`460 + 85 xx 4 = ( x + 200) xx 4`

`460 + 340 = (x+200)xx4`

` 800= (x+200)xx4`

`x+200=800:4`

`x+200=200`

`x=200-200`

`x=0`

__

`(x-7)(2x-8)=0`

`@ TH1`

`x-7=0`

`x=0+7`

`x=7`

`@ TH2`

`2x-8=0`

`2x=0+8`

`2x=8`

`x=8:2`

`x=4`

__

`x -280 : 35=5xx54`

`x -280 : 35=270`

`x-8=270`

`x=270+8`

`x=278`

__

`324 + 16xx(2x+3)=404`

`16xx(2x+3)=404 -324`

`16xx(2x+3)=80`

`2x+3=80:16`

`2x+3=5`

`2x=5-3`

`2x=2`

`x=2:2`

`x=1`

24 tháng 10 2021

d: ta có: \(x^2-4x+4=9\left(x-2\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=11\end{matrix}\right.\)

25 tháng 8 2018

a) Với x = 24

=> x + 1 = 24 (1)

Thay (1) vào A ta được:

\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(A=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2-x+x+1\)

\(A=1\)

b) Với x = 31

=> x - 1 = 30 (1)

Thay (1) vào B ta được

\(B=x^3-\left(x-1\right)x^2-\left(x-1\right)x+1\)

\(B=x^3-x^3+x^2-x^2+x+1\)

\(B=x+1\)

\(B=31+1=32\)

c) Với x = 14

=> x + 1 = 15

x + 2 = 16

2x + 1 = 29

x - 1 = 13

Thay tất cả biểu thức trên vào C ta được

\(C=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)

\(C=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

\(C=-x\)

\(C=-14\)

d) Ta có:

\(\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)=1\)

\(\Rightarrow\left(-2+x^2\right)^5=1\)

\(\Rightarrow-2+x^2=1\)

\(\Rightarrow x^2=1+2=3\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\=-\sqrt{3}\end{matrix}\right.\)

22 tháng 11 2017

6705+670x123-670x23

= 670x(123-23)+6705

=670x100+6705

=67000+6705

=73705

22 tháng 11 2017

2917x85-2817x35

=2917x(85-35)

=2917x50

=145850

24 tháng 8 2017

Bài 1:

\(D=-4x^2-4x+3\)

\(=-\left(4x^2+4x+1\right)+4\)

\(=-\left(2x+1\right)^2+4\)

Với mọi giá trị của x ta có:

\(\left(2x+1\right)^2\ge0\Rightarrow-\left(2x+1\right)^2\le0\)

\(\Rightarrow-\left(2x+1\right)^2+4\le4\)

Vậy Max D = 4

Để D = 4 thì \(2x+1=0\Rightarrow x=-\dfrac{1}{2}\)

\(C=9x^2+6x+2=\left(9x^2+6x+1\right)+1\)

\(=\left(3x+1\right)^2+1\)

Với mọi giá trị của x ta có:

\(\left(3x+1\right)^2\ge0\Rightarrow\left(3x+1\right)^2+1\ge1\)

Vậy Min C = 1

Để C = 1 thì \(3x+1=0\Rightarrow x=-\dfrac{1}{3}\)

\(E=25x^2+16x+4\)

\(=25\left(x^2+\dfrac{16}{25}x+\dfrac{64}{625}\right)+\dfrac{36}{25}\)

\(=25\left(x+\dfrac{8}{25}\right)^2+\dfrac{36}{25}\)

Với mọi giá trị của x ta có:

\(25\left(x+\dfrac{8}{25}\right)^2\ge0\Rightarrow25\left(x+\dfrac{8}{25}\right)^2+\dfrac{36}{25}\ge\dfrac{36}{25}\)Vậy Min E = \(\dfrac{36}{25}\)

Để \(E=\dfrac{36}{25}\) thì \(x+\dfrac{8}{25}=0\Rightarrow x=-\dfrac{8}{25}\)

Sai thông cảm cho tớ nha~.~. Chúc bạn hc tốt ^.^

a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)

\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)

\(\Leftrightarrow4\sqrt{x-3}=20\)

\(\Leftrightarrow x-3=25\)

hay x=28

b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\)

\(\Leftrightarrow x+2=9\)

hay x=7