K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2021

ợ ợ hahahahahaha

29 tháng 8 2021

Giá trị nhỏ nhất là 3

7 tháng 5 2018

nhân cả 2 vế với 2 rồi bunhia

6 tháng 4 2018

câu c là \(\dfrac{1}{2}\)(x+y+z) nhé, mih chép nhầm

21 tháng 6 2017

b)Áp dụng BĐT \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ta có:

\(\dfrac{x}{x+1}=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)\)

Tương tự cho 2 BĐT còn lại ta có:

\(\dfrac{y}{y+1}\le\dfrac{1}{4}\left(\dfrac{y}{x+y}+\dfrac{y}{y+z}\right);\dfrac{z}{z+1}\le\dfrac{1}{4}\left(\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(P\le\dfrac{1}{4}\left(\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{z+x}{z+x}\right)=\dfrac{1}{4}\cdot3=\dfrac{3}{4}\)

Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)

21 tháng 6 2017

chỉ tui với...

8 tháng 12 2023

 Trước hết ta chứng minh BĐT sau: \(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\) (*) với \(a,b,x,y>0\). Thật vậy, (*) tương đương \(\dfrac{a^2y+b^2x}{xy}\ge\dfrac{a^2+2ab+b^2}{x+y}\)

 \(\Leftrightarrow a^2xy+a^2y^2+b^2x^2+b^2xy\ge2abxy+a^2xy+b^2xy\)

 \(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh. ĐTXR \(\Leftrightarrow ay=bx\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\)

Áp dụng BĐT (*) liên tiếp, ta được:

 \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b\right)^2}{x+y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

ĐTXR \(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

Ta có đpcm.

1 tháng 1 2018

a) Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> ad = bc

Ta có : (a + 2c)(b + d)

= a(b + d) + 2c(b + d)

= ab + ad + 2cb + 2cd (1)

Ta có : (a + c)(b + 2d)

= a(b + 2d) + c(b + 2b)

= ab + a2d + cb + c2b

= ab + c2d + ad + c2b (Vì ad = cd) (2)

Từ (1),(2) => (a + 2c)(b + d) = (a + c)(b + 2d) (ĐPCM)

1 tháng 1 2018

Sửa đề bài : P = \(\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\)

Ta có : \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)

=> \(\dfrac{y+z+t}{x}=\dfrac{z+t+x}{y}=\dfrac{t+x+y}{z}=\dfrac{x+y+z}{t}\)

=> \(\dfrac{y+z+t}{x}+1=\dfrac{z+t+x}{y}+1=\dfrac{t+x+y}{z}+1=\dfrac{x+y+z}{t}+1\)=> \(\dfrac{y+z+t+x}{x}=\dfrac{z+t+x+y}{y}=\dfrac{t+x+y+z}{z}=\dfrac{x+y+z+t}{t}\)TH1: x + y + z + t # 0

=> x = y = z = t

Ta có : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)

P = \(\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}\)

P = 1 + 1 + 1 + 1 = 4

TH2 : x + y + z + t = 0

=> x + y = -(z + t)

y + z = -(t + x)

z + t = -(x + y)

t + x = -(y + z)

Ta có : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)

P = \(\dfrac{-\left(z+t\right)}{z+t}=\dfrac{-\left(t+x\right)}{t+x}=\dfrac{-\left(x+y\right)}{x+y}=\dfrac{-\left(y+z\right)}{y+z}\)

P = (-1) + (-1) + (-1) + (-1)

P = -4

Vậy ...

30 tháng 3 2018

1.VT= \(\dfrac{x}{z}+\dfrac{y}{z}+\dfrac{y}{x}+\dfrac{z}{x}+\dfrac{z}{y}+\dfrac{x}{y}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{x}{z}+\dfrac{z}{x}\right)+\left(\dfrac{y}{z}+\dfrac{z}{y}\right)\)

Áp dụng BĐT Cô-si cho 2 số dương, ta có:

\(\dfrac{x}{y}+\dfrac{y}{x}\)≥ 2\(\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}\)=2; tương tự \(\dfrac{x}{z}+\dfrac{z}{x}\)≥2; \(\dfrac{y}{z}+\dfrac{z}{y}\)≥2.

Cộng 3 BĐT trên, ta được đpcm.

31 tháng 3 2018

2.Đặt b+c-a= x, a+c-b= y, a+b-c= z. Khi đó x,y,z>0.

2a= y+z; 2b= x+z; 2c= x+y. Khi đó bđt cần chứng minh trở thành:

\(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{z+x}{y}\)≥6.

Theo bài 1 bđt luôn đúng

8 tháng 8 2021

? cho a,b,c tìm x,y,z là seo?

8 tháng 8 2021

chắc đề cho x+y+z=1

\(=>\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

\(=>\dfrac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}\)

\(=\dfrac{x}{x+\sqrt{xy}+\sqrt{xz}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

làm tương tự với \(\dfrac{y}{y+\sqrt{y+xz}},\dfrac{z}{z+\sqrt{z+xy}}\)

\(=>A\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) dấu"=" xảy ra<=>x=y=z=`/3

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 1:
Vì $x+y+z=1$ nên:

\(Q=\frac{x}{x+\sqrt{x(x+y+z)+yz}}+\frac{y}{y+\sqrt{y(x+y+z)+xz}}+\frac{z}{z+\sqrt{z(x+y+z)+xy}}\)

\(Q=\frac{x}{x+\sqrt{(x+y)(x+z)}}+\frac{y}{y+\sqrt{(y+z)(y+x)}}+\frac{z}{z+\sqrt{(z+x)(z+y)}}\)

Áp dụng BĐT Bunhiacopxky:

\(\sqrt{(x+y)(x+z)}=\sqrt{(x+y)(z+x)}\geq \sqrt{(\sqrt{xz}+\sqrt{xy})^2}=\sqrt{xz}+\sqrt{xy}\)

\(\Rightarrow \frac{x}{x+\sqrt{(x+y)(x+z)}}\leq \frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

\(Q\leq \frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

Vậy $Q$ max bằng $1$

Dấu bằng xảy ra khi $x=y=z=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 2:
Vì $x+y+z=1$ nên:

\(\text{VT}=\frac{1-x^2}{x(x+y+z)+yz}+\frac{1-y^2}{y(x+y+z)+xz}+\frac{1-z^2}{z(x+y+z)+xy}\)

\(\text{VT}=\frac{(x+y+z)^2-x^2}{(x+y)(x+z)}+\frac{(x+y+z)^2-y^2}{(y+z)(y+x)}+\frac{(x+y+z)^2-z^2}{(z+x)(z+y)}\)

\(\text{VT}=\frac{(y+z)[(x+y)+(x+z)]}{(x+y)(x+z)}+\frac{(x+z)[(y+z)+(y+x)]}{(y+z)(y+x)}+\frac{(x+y)[(z+x)+(z+y)]}{(z+x)(z+y)}\)

Áp dụng BĐT AM-GM:
\(\text{VT}\geq \frac{2(y+z)\sqrt{(x+y)(x+z)}}{(x+y)(x+z)}+\frac{2(x+z)\sqrt{(y+z)(y+x)}}{(y+z)(y+x)}+\frac{2(x+y)\sqrt{(z+x)(z+y)}}{(z+x)(z+y)}\)

\(\Leftrightarrow \text{VT}\geq 2\underbrace{\left(\frac{y+z}{\sqrt{(x+y)(x+z)}}+\frac{x+z}{\sqrt{(y+z)(y+x)}}+\frac{x+y}{\sqrt{(z+x)(z+y)}}\right)}_{M}\)

Tiếp tục AM-GM cho 3 số trong ngoặc lớn, suy ra \(M\geq 3\)

Do đó: \(\text{VT}\geq 2.3=6\) (đpcm)

Dấu bằng xảy ra khi $3x=3y=3z=1$