K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì số chính phương khi chia cho 4 chỉ có thể chia hết hoặc dư 1 mà 2014 chia 4 dư 2

suy ra n2+2014n2+2014 chia 4 dư 2 hoặc dư 3.

Vậy n2+2014n2+2014 không là số chính phương.

17 tháng 6 2019

Giả sử tồn tại  m \(\in\)N để m2 + 2014 là số chính phương

=> m2 + 2014 = n2    ( n \(\in\)N*)

     n2 - m2       = 2014

Xét : (n - m )( m+n) = (n-m)n + (n-m)m = n2 - m.n + m.n - m2 = n2 - m2 

( n-m)( n + m) = 2014 (1)

Thấy ( n-m )+( n + m) = 2n là số chẵn

Vậy n -m và n +m là hai số cùng chẵn hoặc cùng lẻ

       (n -m)(n+m) = 2014 là 1 số chẵn

=> n - m và n + m không thể là hai số lẻ

=> n - m và n + m không thể là hai số chẵn.

=> n - m = 2p và m +n = 2q ( p;q \(\in\)N)

=> (n-m)(n +m) = 2p . 2q = 4pq

=> (n-m)(n+m) \(⋮\)4 (2)

Mà 2014 \(⋮̸\)4 (3)

Từ (1),(2),(3) => Giả sử này sai => không có m t/m

25 tháng 10 2017

La so Chinh Phuong nhe

22 tháng 10 2019

Bạn tham khảo tại đây nhé:

Tìm n sao cho $2^n+3^n+4^n$ là số chính phương - Số học ...

Chúc bạn học tốt!

16 tháng 3 2021

Vì n thuộc N* => n thuộc {1;2;3;4;...}

Ta xét các trường hợp sau :

+ nếu n=1

Khi đó : A=1!=1=12-là số chính phương ( thỏa mãn )

+ nếu n=2

Khi đó : A=1!+2!=1+1x2=3-không là số chính phương (loại)

+Nếu n=3

khi đó : A=1!+2!+3!=1+1x2+1x2x3=1+2+6=9=32-là số chính phương (thỏa mãn)

+Với n>hoặc=4

Ta có : A= 1!+2!+3!+4!=1+1x2+1x2x3+1x2x3x4=1+2+6+24=33 có chữ số tận cùng là 3

Mà 5!;6!;7!;...;n! có chữ số tận cùng là 0

=>A=1!+2!+3!+4!+...+n! có chữ số tận cùng là 3(với n>hoặc = 4)

Mà số chính phương không thể có chữ số tận cùng là 3

Nên A=1!+2!+3!+4!+...+n!không là số chính phương (với n> hoặc =4)

Vậy n thuộc { 1;3 } thì A=1!+2!+3!+...+n! là số chính phương

16 tháng 1 2017

n=1

n=3

15 tháng 4 2017

ta có:

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0

do 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên 1!+2!+....+n! không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.