K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

thằng đần

19 tháng 4 2022

\(B=x^2+3x-1=x^2+2.\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{13}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{13}{4}\ge-\dfrac{13}{4}\)

\(B_{min}=\dfrac{-13}{4}\Leftrightarrow x=\dfrac{-3}{2}\)

10 tháng 7 2017

Ta có : \(\left|2x-5\right|+\left|7-2x\right|\ge\left|2x-5+7-2x\right|\forall x\)

\(\Leftrightarrow\left|2x-5\right|+\left|7-2x\right|\ge2\forall x\)

\(\Rightarrow A_{min}=2\)

6 tháng 10 2021

\(a,f\left(x\right)⋮g\left(x\right)\\ \Leftrightarrow\dfrac{-x^4+2x^2-3x+5}{x-1}\in Z\\ \Leftrightarrow\dfrac{-x^4+x^3-x^3+x^2+x^2-x-2x+2+3}{x-1}\in Z\\ \Leftrightarrow\dfrac{-x^3\left(x-1\right)-x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)+3}{x-1}\in Z\\ \Leftrightarrow-x^3-x^2+x-2+\dfrac{3}{x-1}\in Z\\ \Leftrightarrow3⋮x-1\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\\ Mà.x< 0\\ \Leftrightarrow x=-2\\ b,B=\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+4y^2-2024\\ B=\left(x-y\right)^2+4\left(x-y\right)+4+4y^2-2024\\ B=\left(x-y-2\right)^2+4y^2-2024\ge-2024\\ B_{min}=-2024\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

29 tháng 10 2021

\(B=\left(x-1\right)^2-4\ge4\\ B_{min}=4\Leftrightarrow x=1\)

29 tháng 10 2021

\(B=x^2-2x-3=\left(x^2-2x+1\right)-4\)

\(=\left(x-1\right)^2-4\ge-4\)

\(minB=-4\Leftrightarrow x=1\)

14 tháng 2 2020

Z=|3x-3|+|x-4|-|3|

=3|x-1|+|x-4|-3

Ta có \(\left|x-1\right|\ge x-1\)

\(2\left|x-1\right|\ge0\)

\(\left|x-4\right|\ge4-x\)

\(\Rightarrow Z\ge x-1+0+4-x-3=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\x-1=0\\x-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=1\\x\le4\end{cases}\Leftrightarrow}x=1}\)

14 tháng 2 2020

cảm ơn nhóe