Tìm x để căn thức sau xác định
\(\sqrt{\dfrac{1}{2-x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A xác định khi:
x - 3 ≥ 0 và 4 - x > 0
⇔ x ≥ 3 và x < 4
⇔ 3 ≤ x < 4
b) B xác định khi x - 1 > 0 và x - 2 ≠ 0
⇔ x > 1 và x ≠ 2
a) \(A=\sqrt[]{x-3}-\sqrt[]{\dfrac{1}{4-x}}\left(1\right)\)
\(\left(1\right)xđ\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\4-x>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x< 4\end{matrix}\right.\)
\(\Leftrightarrow3\le x< 4\)
b) \(B=\dfrac{1}{\sqrt[]{x-1}}+\dfrac{2}{\sqrt[]{x^2-4x+4}}\left(1\right)\)
\(\left(1\right)xđ\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\x^2-4x+4>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\\left(x-2\right)^2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x\ne2\end{matrix}\right.\)
1: ĐKXĐ: -2/2x-2>=0
=>2x-2<0
=>x<1
2: ĐKXĐ: 2/3x-1>=0
=>3x-1>0
=>x>1/3
3: ĐKXĐ: 2x-2/(-2)>=0
=>2x-2<=0
=>x<=1
4: ĐKXĐ: (3x-2)/5>=0
=>3x-2>=0
=>x>=2/3
5: ĐKXĐ: (x-2)/(x+3)>=0
=>x>=2 hoặc x<-3
a. không có ĐK, vì muốn a đc xác định cần \(\sqrt{x-9}\) và \(\sqrt{6-x}\) \(\ge0\)
mà điều kiện để \(\sqrt{x-9}\) và \(\sqrt{6-x}\ge0\) là \(9\le x\le6\)
Dễ thấy không có số nào tương thích với x
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-5\end{matrix}\right.\)
b: ĐKXĐ: \(x=2\)
c: ĐKXĐ: \(x\ge4\)
Căn thức đã cho xác định khi:
2-x>=0 và x>=0
<=>x<=2 và x>=0
<=>0<=x<=2
Vậy với 0<=x<=2 thì căn thức đã cho xác định.
\(\sqrt{1-x}+\sqrt{x-1}\)
Để căn thức XĐ thì \(\hept{\begin{cases}1-x\ge0\\x-1\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le1\\x\ge1\end{cases}}}\)
a) ĐKXĐ: \(x>0;x\ne4\)
\(Q=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}\right)\)
\(=\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right]:\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}:\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)
b) Để biểu thức \(Q\) có giá trị âm thì \(\dfrac{3\sqrt{x}}{\sqrt{x}-2}< 0\)
\(\Rightarrow\sqrt{x}-2< 0\) (vì \(3\sqrt{x}>0\forall x>0;x\ne4\))
\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0\le x< 4\)
Kết hợp với điều kiện xác định của \(x\), ta được: \(0< x< 4\)
\(\text{#}\mathit{Toru}\)
Để \(\sqrt{\dfrac{1}{2-x}}\) xác định khi:
\(2-x>0\)
\(\Leftrightarrow-x>-2\)
\(\Leftrightarrow x< 2\)