so sánh 2/ 4 1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3.3}< \frac{1}{2.3}\)
......
\(\frac{1}{100.100}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{100.100}< \frac{1}{1.2}+..+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+..+\frac{1}{100.100}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2.2}+..+\frac{1}{100.100}< 1-\frac{1}{100}< 1\).Suy ra điều phải chứng minh. câu b tương tự. bấm đúng cho mình nha
=> 4.S = 1 + 4 2 + 4 3 + 4 4 + ... + 4 2014 => 4.S - S = 1 + 4 2 + 4 3 + 4 4 + ... + 4 2014 − 4 1 + 4 2 + 4 3 + ... + 4 2014 => 3.S = = 1 + 4 2 − 4 1 + 4 3 − 4 2 + 4 4 − 4 3 + ... + 4 2014 − 4 2013 − 4 2014 => 3.S = 1 + 4 1 + 4 1 + ... + 4 1 − 4 2014 Tính A= 1 + 4 1 + 4 1 + ... + 4 1 => 4.A = 4 + 1 + 4 1 + 4 1 + ... + 4 1 => 4.A - A = 4 − 4 1 => A= 3 4 − 3.4 1 4 1 2014 4 1 2014 4 Trả lời 3 Đánh dấu Cho tổng gồm 2014 số hạng: S= 1/4 + 2/4 2 + 3/4 3 + 4/4 4 + ... + 2014/4 2014 Chứng mih rằng: S < 1 2 3 2013 ( 2 3 2013 ) ( 2 3 2014 ) ( ) ( 2 2 ) ( 3 3 ) ( 2013 2013 ) 2014 2 2013 2014 2 2013
\(S=1+4^2+4^3+...+4^{99}\)
\(\Rightarrow S+4=1+4+4^2+4^3+...+4^{99}\)
\(\Rightarrow S+4=\dfrac{4^{99+1}-1}{4-1}=\dfrac{4^{100}-1}{3}\)
\(\Rightarrow S=\dfrac{4^{100}-1}{3}-4=\dfrac{4^{100}-13}{3}\)
\(\Rightarrow3S+1=3.\dfrac{4^{100}-13}{3}+1\)
\(\Rightarrow3S+1=4^{100}-12\)
\(\Rightarrow3S+1=2^{200}-2^2.3>2^{100}\)
mà \(32^{20}=\left(2^5\right)^{20}=2^{100}\)
\(\Rightarrow3S+1>32^{20}\)
Lời giải:
$\frac{2}{4}> \frac{1}{4}$ do $2>1$