cho tứ diện ABCD gọi H,K lần lượt là trung điểm AB,BC. Xét vị trí tương đối của các cặp đường thẳng sau đây
a) HK và BC
b) HK và AC
c) BK và CD
e) HK và CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCBD có
M,N lần lượt là trung điểm của CD,CB
=>MN là đường trung bình
=>MN//BD
b: \(D\in AM;D\in DA\)
Do đó: AM cắt CD tại D
c: Trong mp(ABCD), ta có: BM không song song với DN
=>BM cắt DN tại I
e: Trong mp(ABCD), ta có: MN và AB không song song
=>MN cắt AB tại K
b: \(BD\subset\left(ABD\right)\)
=>BD nằm trong mp(ABD)
c: \(D\in CD\)
\(D\in\left(ABD\right)\)
Do đó: \(D=CD\cap\left(ABD\right)\)
=>CD cắt (ABD)
d: Xét ΔCBD có H,K lần lượt là trung điểm của CB,CD
=>HK là đường trung bình
=>HK//BD
=>HK//(ABD)
a: Xét ΔSBD có
H,K lần lượt là trung điểm của SB,SD
=>HK là đường trung bình của ΔSBD
=>HK//BD
mà \(BD\subset\left(ABCD\right)\);HK không thuộc (ABCD)
nên HK//(ABCD)
b: Chọn mp(SBD) có chứa BK
\(O\in BD\subset\left(SBD\right);O\in AC\subset\left(SAC\right)\)
=>\(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)
Gọi E là giao điểm của SO với BK
=>E là giao điểm của BK với mp(SAC)
=>BK cắt (SAC) tại E
c: \(O\in BD\subset\left(SBD\right);S\in\left(SBD\right)\)
Do đó: \(SO\subset\left(SBD\right)\)
a: Xét ΔSBC có SH/SB=SK/SC=1/2
nên HK//BC
mà \(BC\subset\left(ABC\right)\); HK không nằm trong mp(ABC)
nên HK//(ABC)
b: \(K\in SC\subset\left(SBC\right);K\in AK\)
Do đó: \(K\in AK\cap\left(SBC\right)\)
mà \(A\notin\left(SBC\right)\)
nên \(K=AK\cap\left(SBC\right)\)
c: \(A\in\left(SAB\right);H\in SB\subset\left(SAB\right)\)
Do đó: \(AH\subset\left(SAB\right)\)
a: \(C\in AI\)
\(C\in BC\)
Do đó: AI cắt BC tại C
b: HK thuộc mp(SBD)
BC thuộc mp(SBC)
Do đó: HK và BC là hai đường chéo nhau
c:Trong mp(SBD), ta có: HK và SI không song song
=>HK cắt SI tại M
d: \(H\in BC\subset\left(SBC\right)\)
\(H\in AH\)
Do đó: AH cắt (SBC)=H
a: Xét ΔSAB có H,K lần lượt là trung điểm của SA,SB
=>HK là đường trung bình
=>HK//AB
b: HK//AB
AB//CD
Do đó: HK//CD
c: \(B\in SK\)
\(B\in BC\)
Do đó: SK cắt BC tại B
d: \(HK\subset\left(SAB\right)\)
\(BC\subset\left(SBC\right)\)
Do đó: HK và BC là hai đường thẳng chéo nhau
e: \(HK\subset\left(SAB\right);SD\subset\left(SAD\right)\)
Do đó: HK và SD là hai đường thẳng chéo nhau
f: \(O\in SO\)
\(O\in\left(ABCD\right)\)
Do đó: \(SO\cap\left(ABCD\right)=\left\{O\right\}\)
a: ABCD là hình chữ nhật
=>AD//BC
b: SB cắt SC tại S
=>SB và SC là hai đường thẳng cắt nhau
c: SA cắt SD tại S
=>SA và SD là hai đường thẳng cắt nhau
d: \(SB\subset\left(SBC\right)\)
\(CD\subset\left(SCD\right)\)
Do đó: SB và CD là hai đường thẳng chéo nhau
e: \(SC\subset\left(SBC\right)\)
\(AD\subset\left(SAD\right)\)
Do đó: SC và AD là hai đường thẳng chéo nhau
Ta co:IA =IB(gt) ; HA =HC(gt)
Suy ra:HI la` đg tb của tam giac ABC
Suy ra:IH =1/2BC ;IH//BC (1)
Trong tam giac BDC co:KD =KB(gt) ;JD =JC(gt)
Suy ra :KJ la đg tb cu`a tam giac BDC
Suy ra :KJ =1/2BC ;KJ//BC (2)
Tu (1) va (2) suy ra :KJ = IH ;KJ // IH
Suy ra :tu giac KIHJ la hinh binh hanh(2 canh doi song song va bang nhau)(*)
Trong tam giac ADC co:HA =HC(gt) ;JD = JC(gt)
Suy ra :HJ la đg tb của tam giac ADC
Suy ra :HJ = 1/2AD
Mà AD =BC(gt) ; HI = 1/2BC(c/m tren)
Suy ra :HJ = HI (**)
Tu (*) va (**) suy ra tu giac KIHJ la hinh thoi (hbh co 2 canh ke bang nhau)
Suy ra :IJ vuong goc voi KH
a: \(K\in HK;K\in BC\)
Do đó: HK cắt BC tại K
b: Xét ΔBAC có
H,K lần lượt là trung điểm của BA,BC
=>HK là đường trung bình
=>HK//AC
c: C thuộc BK
C thuộc CD
Do đó: BK cắt CD tại C
e: Trong mp(ABCD), ta có: HK và CD không song song vối nhau
=>HK cắt CD tại M